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ABSTRACT

Henyey, F.S. and Pomphrey, N., 1983. Eikonal description of internal wave interactions: a
non-diffusive picture of “induced diffusion”. Dyn. Atmos. Oceans, 7: 189-219.

We use eikonal theory to investigate the “induced diffusion” interaction in the ocean
between small-scale internal waves and a much larger scale internal wave field. Surprising
results are found. The eikonal description follows transport in both position and wavenumber
space. The approach consists of modeling the small-scale portion as a superposition of wave
packets, each of which moves through the large-scale flow according to the laws of particle
mechanics: trajectories are determined by the solution of Hamilton’s ordinary differential
equations of motion, with a Hamiltonian given by a dispersion relation H(k, x) = w = o(k)+
v,-k. The first term on the right-hand side is the dispersion relation in the absence of the
large-scale flow, v,, and the second term is a Doppler shift that describes the interaction
between the different scales. We give a careful derivation of the eikonal equations for a fluid,
starting with a Hamiltonian description of the fluid flow (Section 2). A discussion is given of
the important difference in meaning between the total energy of the wave packet, wA, and the
intrinsic energy, o4 (A is the action). We also clarify the existence of a Stokes drift for
internal waves (Section 3). Numerical experiments were performed which consist of following
the motion of the center of a wave packet as it propagates through a Garrett-Munk field of
internal waves (Section 4). The initial conditions of the packet were chosen to lie within the
induced diffusion kinematic regime. A total of 50 trajectories were obtained from which
average properties were calculated. The results of our numerical experiments show that
horizontal transport is unimportant, whereas transport through vertical wavenumbers is very
significant. We find a mean motion of k, to large values with the same sign as at r = 0, and
fluctuations about that mean. The individual excursions in k,(¢) are of large magnitude, and
we argue that the traditional idea of diffusion in k,—¢ space, implying a random walk, is
inappropriate. Thirtyfour out of the 50 trajectories in our sample reached a vertical wave-
length cut-off placed at 5 m, doing so in essentially the same way as trajectories which
approach a critical layer in a time and horizontal position independent shear flow. On the
basis of our numerical results we provide a simple model which describes much of the
transport that occurs. We argue that diffusion occurs in o~ z space, and a simple “mean first
passage” calculation allows us to derive an expression for the probability density of critical
layers.
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1. INTRODUCTION

The subject of this paper is an eikonal investigation of the interaction of
small-scale internal waves with a much larger scale internal wave field.

Observational data suggests a “universal” steady state velocity spectrum
for oceanic internal waves (Garrett and Munk, 1979). Several papers have
attempted to understand the role of wave—wave interaction in determining
the observed spectral shape (Olbers, 1976; McComas, 1977; McComas and
Bretherton, 1977, Pomphrey et al., 1980; McComas and Muller, 1981).
Common to all of these attempts has been the description of wave interac-
tions in terms of normal modes of the linear equations of fluid motion. The
earliest detailed calculations assumed that the internal wave field is weakly
turbulent, and representable as a statistical ensemble of weakly coupled
wave modes. In this case the Hasselman transport theory (Hasselman, 1962)
is valid, which provides an evolution equation for action density in wave-
number space ensemble averaged over realizations of the chosen wave field.
The work of McComas and Bretherton (1977) was particularly important
here. Using the Garrett—Munk spectrum to represent the internal wave field,
these authors presented a simplified picture of action transfer in terms of
three “limiting triad mechanisms”. One of these mechanisms, named in-
duced diffusion, is particularly significant since it accounts for most of the
action transport at high frequencies (o = 5f, f= Coriolis frequency) and
modenumbers (m > 10). Transport rates, however, are too high to believe the
weak interaction theory which is used to calculate the rates (Holloway,
1982).

The physical description of induced diffusion as the interaction between
small-scale, high-frequency internal waves (“test” waves) and a much larger
scale, low-frequency flow suggests a relationship with the Taylor-Goldstein
equation which is used to discuss the stability of stratified shear flows. Meiss
and Watson (1982) have recently exploited this relationship to derive relaxa-
tion rates for internal waves in the induced diffusion domain, without the
need to make any weak interaction assumption (their analysis is based on a
linear equation). In order to sum all orders of perturbation theory, however,
it was crucial for Meiss and Watson to require that

PAO = (K 23, Kt 3 [ G+ C0)e (e

be independent of the average wavenumber, K, of the incoming and outgo-
ing test waves, over an interval of time for which the interaction with the
background must be handled deterministically. This time is the correlation
time of the background as viewed by the system of small-scale waves. In this
expression, {|c¢,|?) and C, are the intensity and autocorrelation function of
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the background which, by definition, are independent of K. Meiss and
Watson demonstrate that the mode coupling coefficient, A, is very nearly
independent of K. This leaves only the frequency mismatches

A, =0k, =0k nto

which can depend on K. Since / <« K for induced diffusion, A can be
expanded as

Ai: 1 '(Vgroup(K) i_vphase([))

The neglect of the K dependence in A , amounts to the assumption that, over
the correlation time, the group velocities of the short waves do not respond
to the background. It follows that the position of a wave packet, [v,,,d7 +
X,, 1s uncorrelated with any property of the background, given this ap-
proximation. Meiss and Watson calculate relaxation rates for short waves
which are substantially reduced from those predicted by weak interaction
theory, being within a factor of 10 of the linear frequency even at the highest
modenumbers. Nevertheless, the picture of induced diffusion as providing
the significant transport mechanism for internal waves remained intact.

In the approaches described so far, the mode amplitude is the fundamen-
tal quantity whose time evolution is followed. Unless one is able to follow
the phases of these modes extremely well, and in particular to determine
correctly subtle phase correlations between modes, position space informa-
tion is incorrectly described. Yet position space information can be im-
portant in understanding the processes involved and in assessing the validity
of approximations, and can be interesting in itself in comparison with
observations on position space transport and in connection with sources and
sinks of energy.

The eikonal description, in contrast to the mode description, follows
transport in both position and wavenumber space. The fundamental object
in this description is the Wigner function, with the uncertainty constraint
(that the position of a wave cannot be defined to better than about a half
wavelength) usually ignored (correction methods, however, are available; see
Henyey (1980)). The Wigner function is the analog for waves of the simulta-
neous specification of the position and velocity of a molecule in a fluid. The
Boltzmann equation for molecules follows transport in both position and
velocity. We have performed, and will present in this paper, a detailed
numerical investigation of transport in the “induced diffusion” kinematic
regime using eikonal theory. We will present numerical evidence and a
plausibility argument that the vertical position of a wave packet is strongly
correlated with the background, and that this correlation is a dominant
effect in the evolution of the vertical wavenumber.

The transport of action through vertical wavenumber space is therefore
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sensitive to the vertical position dependence of the action. If we were to
assume that the vertical group velocity of a wave packet remains constant
over a background correlation time, then the vertical wavenumber transport
would look very different. This cise would correspond to a different repre-
sentation of the same set of approximations made by Meiss and Watson, and
we would expect our calculation of the evolution of the Wigner function to
agree with that of Meiss and Watson. In the absence of our making such an
approximation, however, we expect that the two sets of results are different.

The eikonal approach is valid in cases where there is a scale separation,
such as there is for induced diffusion. The approach consists of imagining
the small-scale wave field as a collection of “molecules”, each with a
position and wavenumber. These “molecules” are not to be thought of as
isolated objects with rigid boundaries, but generally overlap one another,
and fill all of the available space. The actual wave field is then the
superposition of all the wave packets associated with all the molecules. Each
wave packet moves along a definite trajectory, much as a particle moves
along its path. The trajectories are determined by a Hamiltonian given by
the dispersion relation, w = H(k, x), entirely analogous to classical mecha-
nics where E = H(p, x) determines the trajectory of a particle. Hamilton’s
equations are v = dw/dk, the group velocity, and dk/d¢= —9dw/9x. In
eikonal theory the phase velocity plays no role, and the overall phase of the
wave does not appear in the equations. This is an advantage over modal
theories which attempt to obtain position space information, since wave
phases are ususally very sensitive to error propagation.

A derivation of the eikonal equations is presented in Section 2, and a
further discussion of the equations is given in Section 3. It is convenient to
use an interpretation that is slightly different from that which is standard in
fluid mechanics. The differences allow the techniques of classical particle
mechanics to be used in their textbook form. The eikonal equations follow
the evolution of waves which are small in amplitude and have space and /or
time scales which are shorter than anything they interact with. The small
amplitude allows them to be treated linearly, and the small size allows a
perturbation expansion in the scale ratio &. The eikonal equations match
exactly the first two nontrivial powers of «.

To apply the eikonal to the induced diffusion problem, we imagine the
flow to be the sum of a given background and a perturbation. The back-
ground is not to be identified with the mean flow, but rather the mean flow
is the sum of background plus Stokes drift. The perturbation is a superposi-
tion of a set of test wave packets, each with a position (e.g., its center) and a
wavenumber (e.g., the mean wavenumber of the packet). Each test wave
carries its own amount of action, 4. This amount of action is conserved. The
energy of the test wave packet is Aw and its momentum is Ak. w is the total
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frequency, including the Doppler shift; w = o + k - v, (where o is the intrinsic
frequency, given as a dispersion relation, and v, is the background velocity
flow). Similarly, two energies can be defined, the “intrinsic energy” E, = Ao
(a relation derived by Garrett (1967)), and the “total energy” E = Aw. This
latter energy is the more fundamental quantity since E is equal to a
Hamiltonian, H(x, Ak), where x and Ak are canonically conjugate variables.
To order &2, the only response of the background to the waves is by exchange
of mass and momentum (which imply the exchange of energy); we say that
the background and the waves are “dynamically independent”.

The value of A scales out of the equations of motion, so the amount of
action in each packet is arbitrary. As a consequence we can consider
h(x,k)=H/A as the Hamiltonian and x and k as conjugate variables.
w = h(x, k) is the dispersion relation for the waves, including Doppler shift.
The total energy and momentum are obtained by multiplying « and k by 4.

The equations of motion for the packet are Hamilton’s equations:

dx oA dk oh
=—and—=

dr kT dr T ax
from which it follows that
do_ o

dr 9«

In eikonal theory the phase velocity plays no role, and the overall phase of
the wave does not appear in the equations. Phase differences are formally
given by

final
A¢p = wd? + k- dx

initial

point
but inconsequential differences between calculated and true values of w and
k can make the calculated value of A¢ over any reasonably long path differ
significantly from its true value. Moreover, each caustic, of which many must
exist in the ocean, causes this expression to be wrong by an extra = /2 phase
shift. The inability to follow the phase is, in fact, a strong point of the
eikonal method, since the phase is physically very sensitive to everything. In
mode calculations, the phase must be followed very closely in order to
reconstruct position information (assuming the position of the test wave is
important for its dynamics).

In Section 4 we describe a numerical experiment which consists of
following the motion of the center of a wave packet as it propagates through
a Garrett—Munk field of internal waves. This section begins with a summary
of the essential results of the eikonal derivation and can be read as a
self-contained unit. (However, a full appreciation of the underlying ap-
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proximations requires an understanding of Sections 2 and 3.) The initial
wavenumber and frequency of the wave packet are chosen to lie within the
induced diffusion domain. The background flow field is a superposition of
50 linear internal waves chosen by Monte Carlo sampling of the GM-79
model spectrum. Such a flow is predominantly horizontal. Integration of
Hamilton’s equations, which are six coupled ordinary differential equations,
yields the desired motion of the packet. Average properties are obtained by
averaging over 50 individual trajectories.

The results of our numerical experiment, as well as other experiments not
presented here, show that horizontal transport is unimportant. For example,
the wave packet moves with an average horizontal speed of only one-tenth
that of a typical Garrett—Munk wave group. On the other hand, changes in
vertical wavenumber magnitude, k,, are very significant. We find a mean
motion of k, to large values, with the same sign as at ¢t = 0, and fluctuations
about that mean. The individual excursions in k, are of large magnitude and
are a striking feature of the results: an absorbing barrier was placed at
27 /k,=15 m, so that if the vertical wavelength of a trajectory falls beneath
this cut-off value the trajectory is halted and the initial conditions are reset.
Thirty four out of 50 trajectories in our sample surged through the cut-off in
a time of less than five inertial periods (our time limit for the integrations).
We call such events “critical layer” events because the intrinsic frequency, o,
is close to the inertial frequency, and the wave is almost always behaving in
essentially the same way as one that is approaching a critical layer in a time
and horizontal position independent shear flow. The existence of a large
mean motion of k , and the size of the individual excursions, both show that
the traditional idea of diffusion in k —¢ space, implying a random walk, is
inappropriate. On the basis of our numerical results we provide a simple
model which describes much of the transport that occurs. We argue that
diffusion actually occurs in o-z space, and we close by deriving an expres-
sion for the probability density of critical layers.

2. DERIVATION OF EIKONAL EQUATIONS

In this section we derive the eikonal equations for a fluid. These follow
the evolution of waves which are small in amplitude and have space and /or
time scales which are shorter than anything they interact with.

For a systematic development, it is convenient to start with a Hamiltonian
description of the fluid flow. A number of Hamiltonian descriptions of
continuum fields have been given (Seliger and Whitham, 1968; Miles, 1977;
Morrison and Greene, 1980; Henyey, 1981). All such descriptions lead to
Hamiltonian densities which can be written in the form

H#(q, p, Vq, VP, ¢, Vo) (1)
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q and p are canonical variables, and ¢ (not normally included in the
textbook derivations) a subsidiary variable which allows J##to be written in
terms of first derivatives. ( Vq, etc., means any derivative of any component
of q). Equations for the flow follow from a variational principle for the
action, S:

0=24S
=8/dtd’x(p- 3,4 — ) (2)
The equations are
0H
—9P=%g
0H
0q=—-2
4 5p
8H
0="%5¢ (3)
where
0H 00X v -0
= =5 etc. 4
8q dq 3(vq) @

Henyey (1981) has derived the Hamiltonian density for a stratified fluid in
the incompressible, Boussinesq, f-plane, and dissipation-free approximations.
With the reference density, p,, taken to be unity, the result is

H=v2/2+ U(L) (5)

The potential energy term, U({), depends only on the vertical Lagrangian
displacement, { (one of the canonical coordinates);

U(¢) = (82/2+83/63,) N> (2 —¢) (6)

For deep ocean internal waves, amplitudes are small compared with the scale
of variation of the Vaisala frequency (1.3 km), therefore, it is sufficient for
our purposes to retain only the quadratic term in U, i.e.,

U($)=§%/2N%(z) (7)

The velocity, v, is a nonlinear function of p, q, ¢ and their derivatives (p and
q are two-dimensional vectors for internal waves, and ¢ is a scalar (Henyey,
1981)). Its precise form is not important here. What is important is that all
the nonlinearity in v occurs as the advective combination —p - vq:

v(p. q,¢)=v,—p- vq (8)
where v, is a linear combination of p, q, and ¢.

Our specific interest is an eikonal description of “induced diffusion”. The
physical description of this process involves a restricted set of interactions,
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between small-scale, high-frequency “test waves” and a much larger scale
low-frequency background flow (McComas and Bretherton, 1977). The test
waves are to be considered as small amplitude perturbations on the back-
ground flow. Because of the small amplitudes, interaction between the test
waves is unimportant. Therefore, 1t suffices to follow the test waves to first
order in their amplitude, a. For this purpose the Hamiltonian is truncated at
quadratic order, 0(a?), retaining all orders in the background. To @(a) the
influence of the test waves on the background is dropped. We assume the
O(a) background flow to be a specified solution of the equations of motion
without the perturbation. At this stage, it is important to imagine the
background to be an exact solution at orders below @(a?); at a later stage
we can replace it with an approximate solution. Later, we will discuss the
O(a?) influence of the test wave on the background.

We perform, therefore, a canonical transformation

P—pt+ P

q9—q,t4q

P9, t ¢ (9)
on the action

S = [dtd’x(p-q— ) (10)

Quantities with subscript O refer to the given background flow, and quanti-
ties without subscripts refer to the test wave perturbation. The latter quanti-
ties are the dynamical variables and we wish to retain these only up to
quadratic terms.

Terms independent of the dynamical variables give a contribution to S
that has no variation when the values of p, q, and ¢ are varied. Such
contributions can, therefore, be dropped. Linear terms in the perturbation
do not contribute to S (except at the boundaries at which a variation is not
performed), since the background is an exact solution of 8S = 0. Thus, only
the quadratic terms are left.

In the quadratic terms, we make one further approximation, consistent
with the eikonal approximation made below. When the expansion (9) is
substituted into terms of the form v - pvq in the kinetic energy, either v, p, or
q, can have subscript zero. The test wave variables are assumed to have much
larger wavenumbers than the background. Thus, the term with q, can be
dropped relative to terms with q. Upon integration by parts, v-pvq— —v-
qVvp (since V - v = 0). It follows, therefore, that the terms in p, can also be
dropped, and the induced diffusion approximation has led us to replace
V- pVq by v, - pVq.

With the set of approximations made, the action has the form

S=[dtd’xp-(3,+v,- V)q—4(p, q, d) (11)
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where # is the quadratic Hamiltonian density in the absence of the back-
ground. The only interaction is in the replacement of the partial time
derivative by the substantive derivative.

d,=93,+v, Vv (12)

If the nonlinear terms in the potential energy or the remaining terms from
the expansion of v:-pwvq had been retained, there would be additional
coupling of the test wave to the background. The coupling retained in (12) is
essentially the same as in the Taylor—Goldstein equation. (Slight differences
are due to the lack of commutation of the operators d, and V. The
contributions of their commutator are of the same order as neglected terms.)

Now that we have eq. 11, we can replace the exact v, by an approximate
solution, such as neglect of the vertical component of v,. If this approxima-
tion had been made earlier, the test wave dynamics would be incorrect due
to the attempt of the test wave equation to compensate for the approximate
background.

We now have a Hamiltonian which is quadratic in the dynamical varia-
bles, with coefficients that may be space and time dependent (via the
specified background flow). In case the reader dislikes one or more of the
approximations we have made so far, we will develop the eikonal approxima-
tion for a general quadratic Hamiltonian. This demonstrates that the essen-
tials of the eikonal theory are independent of these approximations.

To simplify notation, we combine p, q and ¢ into a new vector, z

z=(p.q, ¢) (13)

If p and q have n elements, and ¢ has m elements, then z has 2n + m
elements. Hamilton’s equation, (3), can be rewritten as

SH
%Jaﬂatzlg - EZ—:

3 A ;
=9z, ¥ ve, (14)
where
0 1 0
J=1-1 0 0 (15)
0 0 0

and I is the » X n identity matrix. The zeros are n X n, n X m, m X n, or
m X m zero matrices. An important property of J is its antisymmetry:

Jup = —ha (16)

The most general quadratic Hamiltonian density with no higher than first
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derivatives is

H=1Y [Aaﬁzazﬂ + Bz, Vzp+ vz, Cog- Vi (17)
a.B

The scalars, 4,4, vectors, Bz, and dyadics, ﬁaﬁ, can explicitly depend on
space and time. In our induced diffusion problem, this dependence occurs
primarily through the dependence of B,; on the background velocity. There
is a slower dependence on depth through the Brunt—Vaisala frequency. In
the formal development, we will not restrict the space-time dependence of
A, B, or C.

There is no loss of generality in assuming

A(XB=AB(1

BaB= _B,Ba

= =T

Caﬁ‘ = C,Ba (18)

(The superscript T means transpose in the space indices. The «, 8 indices are
shown explicitly transposed). The equations of motion are

PR EEDY [AaBZB +3Bg Vzg+ 3V - (Bpzg) — V -(C,,B- Vzﬁ)] (19)
B B

This is a linear equation, so solutions superpose. We decompose the field of
waves into a superposition of overlapping wave packets, more or less filling
the available space. Each packet is somewhat localized in space, but is large
enough to contain several wavelengths. Each packet has a narrow band of
wavenumbers, centered on the nominal wavenumber, k, of the packet. The
eikonal approximation is applied to each packet separately.

The eikonal technique involves the ansatz

z,=Re(aeS) (20)

and a scale separation which asserts that the factor e'S varies much more
rapidly than either a_ or the coefficients A, B and C. This scale separation
can be expressed as a formal asymptotic expansion by associating a scale
separation factor, ¢, with each derivative in eq. 19 and replacing S in eq. 20
by S/e, and expanding in powers of e. It is convenient to put all the ¢
dependence into a, (on occasion other choices have been made in the
literature):

a,=a®+ead+ ... (21)
Since eq. 19 is linear, we can ensure that a' is orthogonal to a®. Thus

Y a®e =0 (22)
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where * means complex conjugate.
We assume that ae'S (real and imaginary parts) obeys (19). The 0(1)
terms of (19), divided by €'*, give

2 M.pay’ =0 (23)
where

M= —iwl,—A,—iBg k—k Cy-k (24)
and

0= (25)
k=vS (26)

The lowest order solution, af,o), is determined as an eigenvector with vanish-
ing eigenvalue of a Hermitian matrix, M ;. (The Hermiticity is a conse-
quence of egs. 16 and 18.) The condition for existence of the eigenvalue is

det M =0 (27)

which is an equation that relates w and k. The roots of this equation are the
dispersion relations for the various types of disturbance possible. We will
select the root for internal waves rather than the root for horizontal eddy
motion.

The O(¢) part of (19), divided by e’5, is

¥ M a0+ 3,58,a8 — (¥ - Byg)al® — B, va®
B

+V (Cap- ik)a + 2(Cp - 1K) - va¥| =0 (28)

The components of this equation orthogonal to a” serve to set the values for

a'l, but do not constrain a®. The component along a®, however, is
1ndependent of a'V, and is a condition on a¥. Multiplying (28) by —i/24'®"
and summing on « gives (on taking the real part; the imaginary part
vanishes):

i 0* 0
0|~ Sy
a,B

This has the form of a conservation equation
0,4+ Vv -(veZ)=0 (30)
&7 1s the action density

i
of = 0)* 0
Z a, Ja,Ba;? )

B

+v-4 a®"[B,;— 2k - C,p]af =0 (29)

a.B

4&
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=:4—i(p*-q—q*~p) (31)

and v is the velocity of action flow. The velocity of action flow can be
identified with the group velocity of the waves as follows: differentiate (23)
with respect to the wavenumber, k, multiply by 1,/4 a'“" sum on «, and use
the conjugate of (23) to eliminate the term

day
1 (0)* B
53““ Mes 3K
We obtain
oM 4
0= Y 1,0 a®
S kP
] a * =
P T B I
dw
=Mﬁ -V (32)
Thus, we have the important relation
dw
V= (33)

The phase, S, is eliminated from the basic set of equations (in favor of w and
k) by replacing eqgs. 25 and 26 by their conditions of integrability

ok
YR YVw (34)
v Xk=0 (35)

Each wavepacket moves with velocity, v. In order to follow a wavepacket,
we should know how its wavenumber changes, which is

dk  dk
ar - or +v-vk (36)
Using eqs. 33 and 34, we obtain
dk dw
E;——Vw-Fﬁ("Vk (37)
The dispersion relation gives w as a function of k, x and ¢. Hence
dw dw
Vw—&—+vk~ﬁ (38)

Therefore, using (35) (v k is a symmetric dyadic),
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dk Jw

- (39)
and (33) can be rewritten as

dx Jdow

Equations 39 and 40 are Hamilton’s equations, with w a Hamiltonian given
by the dispersion relation. x and k are the canonically conjugate variables.
These equations are the fundamental equations we integrate to find the
motion of the wave packet in x, k space. For interpretational purposes, these
equations should be modified so that the Hamiltonian is the energy of the
wave packet. The energy density is obtained by replacing z in eq. 17 by
(ae’™s + a*e '5) /2. To leading order, the derivatives act only on the e*’".
The energy density contains slowly varying parts coming from cross terms
between ae’® and a*e 'S, as well as rapidly fluctuating terms proportional to
e*?'S. The rapidly fluctuating terms integrate to zero (up to corrections
which vanish exponentially with the expansion parameter), so the total
energy can be computed from the slowly varying parts. Upon integration by
parts, we can write the energy density to leading order as

E=1Y a9 [ 4,5+ ik By +k Cop- k| af® (41)
«.f

From (23), (24), and (31), this can be rewritten as

E=Aw (42)
Integrating over the wavepacket gives

E=Aw (43)
where

E= [d*x&; A= [d’x A (44)

and where w=(w) =1/4[d’xws’ is the weighted average of w at each
point. We are imagining the situation when the values of w are essentially
constant over the packet. A is the conserved action of the wave packet,
dA/dt=0, and E is the energy. Equation 43 is almost, but not quite,
Garrett’s relation between energy and action (see next section). We have
derived (43) and action conservation in a general context; one need not
verify them separately for each system, as has been the practice in the
literature. The condition for the validity of (43) in the eikonal approximation
is merely that the system has a Hamiltonian. This is known to be true for a
wide class of continuum systems, as long as dissipation processes are
neglected.
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If we write
H=Aw(k, x, 1) (45)
and
p=Ak (46)

then Hamilton’s equation, (39) and (40) can be expressed in terms of the
Hamiltonian which is the energy of the wave packet as

dp _ _9H
ar - ax (47)
dx J0H
P~y (48)

From these equations, one sees that p is the momentum of the wave packet.

The quantity p has been called a “pseudo-momentum”, and its interpreta-
tion as a true momentum has even been labeled a “myth” (Mclntyre, 1981).
Since we accept this myth as true, some discussion is appropriate. It turns
out that this point is closely related to the connection between our expres-
sion, E = Aw, and Garrett’s expression, and to the interaction being entirely
in the replacement 9, — 9, + v, - ¥, and to the Stokes drift. These topics form
the subject matter of the next section.

A complete set of equations in the eikonal approximation is comprised of
Hamilton’s equations, action conservation, and ¥ X k = 0. This last equa-
tion is the condition that a family of trajectories describing the detailed
motion of one packet forms a normal family. This condition is important for
image-forming optical systems (Landau and Lifshitz, 1975), but is of no
particular significance in the transport theory of a random collection of
waves. The equation, v X k = 0, is consistent with Hamilton’s equations; if
it is imposed at the initial time, it holds true at later times. We will consider
wave packets sufficiently small that at 1 = 0 we can assume k to be constant,
so, V X k is trivially zero intially. Furthermore, we only follow the central
position of the wave packets, and, since we are not following phases, we can
consider dispersion as an exchange of action between different packets.

3. THE STOKES DRIFT, TOTAL ENERGY AND INTRINSIC ENERGY

In the previous Section, the following results were obtained:

(1) if the continuum system is describable by a Hamiltonian, then the
eikonal approximation can be made (Whether or not it is accurate is another
matter.);

(2) there is a conserved action, A, which flows with a group velocity;

(3) the energy is Aw and the momentum is Ak;
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(4) the frequency expressed as a function of k and x is a Hamiltonian. By
rescaling with the action, the Hamiltonian is the energy; and

(5) under a reasonable set of approximations, the interaction with the
background flow, v,, is obtained by replacing 9, by 9, + v, - V.

The results 1 to 4 have been obtained in a more general framework than
result 5. For the purposes of the remainder of this paper, we accept result 5,
which applies not only to our problem, but with similar approximations to
many wave systems in which the waves are disturbances of a material
medium. Essentially, all of the fluid dynamics literature on action conserva-
tion, etc., has been concerned with such systems.

The eikonal approximation that follows from result 5 involves a disper-
sion relation

w=0(k)+v,-k (49)

where o(k) is the dispersion relation in the absence of the background flow,
v,. The extra term is the Doppler shift induced by the flow. Following
conventional terminology we call o the intrinsic frequency and w the total
frequency. Multiplying each of these by the action of a wavepacket we
obtain an energy associated with the wavepacket. By analogy with the
terminology for frequencies, we call these the intrinsic and total energies of
the packet. Garrett’s relation (Garrett, 1967) is

E,=Ao (50)

whereas the relation derived in the previous section is E = Aw. The dif-
ference between E and E; is given in terms of eq. 49 and the expression (46)
for the momentum as

E=E +V,-p (51)

Hence, the nature of E is related to the nature of p.

The momentum, p, has been introduced as the canonical momentum-— the
quantity conjugate to the position x, or equivalently as the generator of
infinitesimal displacements of position. If one makes a microscopic theory of
a fluid, the momentum, defined in the same way, is the mass times the
velocity:

p=/d’xpv (52)

(The total velocity is v, + v). We will show the equivalence of expressions
(46) and (52) (through quadratic order, which is the order at which action is
usually defined), thereby demonstrating that p is a true momentum, not a
pseudomomentum. In fact, p turns out to be the Stokes drift of the
wavefield.

The existence of the Stokes drift has been questioned for wavefields other
than surface waves. This issue is clarified by noticing that the decomposition
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into background and wavefield is not the same as the decomposition into
mean flow and fluctuating flow, since the fluid velocity is nonlinear in the
canonical variables. (The quadratic part of v has to be retained when
evaluating (52) because of the constant term in p.) The decomposition (to
0(a*)) into background and wavefield proceeds as follows. The canonical
variables (rather than velocity components) are Fourier transformed into
wavenumber space (Fourier transforming is a canonical transformation),
then projected into small wavenumber components (background) and large
wavenumber components (wave field). The two sets of components are then
Fourier transformed separately, back into position space. As a result, the
canonical variables of the wave field are decomposed into mean and fluctuat-
ing parts. By construction, Poisson brackets between background and wave
field vanish; the different scales are dynamically independent.

The mean momentum (or mean velocity in the incompressible, Boussinesq
approximations) can be evaluated. The mean momentum of the background
is obtained from terms in the momentum that are independent of the wave
field. Terms linear in the wave field canonical variables are fluctuating
quantities, and average to zero. There is a contribution to the average
momentum from the wave field. This is the Stokes drift, i.e., the mass flow
associated with the wave field. It comes from the quadratic terms in p v:

((p¥)quaa) =(PVY) (53)
a,+ay\(ika,—ika}

() &

= iZk(a;f‘aq—aj';ap) (55)

—kA (56)

where (...) denotes the projection described above. Thus, the microscopic
definition of the momentum of the wave field agrees with the definition as
generator of space translation.

A physical interpretation of this result is that the Stokes drift accompanies
the waves, while the background is dynamically independent. Thus, for
example, if initial conditions consist of a fluctuating wave packet and zero
mean flow, the Stokes drift (4k) will move with the packet, while the
background (—Ak at = 0) will evolve separately. The (negative of the)
divergence of the Stokes drift is a source of flow for the background, —d/d¢
(AKk) is a force on the background, and —d/d¢ (Aw) is work done on the
background. Thus the background flow responds indirectly to the wave field.
The relationship of the background flow to the Stokes drift depends on the
geometry of the wave field envelope. An extreme case is a wave packet much
longer in the k direction than in the other two directions. In this instance,
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illustrated in Fig. 1, the Stokes drift deposits water at one end of the packet
and depletes it from the other end. The background includes a dipole return
flow between this source and sink. The return flow occupies a region much
larger than the wave packet, and is much weaker. The total flux of the return
flow cancels the total flux of the Stokes drift, as required by the equation of
continuity. A second extreme case, also illustrated in Fig. 1, is a wave packet
much shorter in the k direction than in the other two directions. In this case,
the source and sink are spread out over the two sides of the flattened packet,
and the return flow cancels the Stokes drift, leaving nearly zero mean flow.

(a)
~—

)

e

i
\

(b)

Fig. 1. The Stokes drift (S) and background (B) in two extreme cases. In case (a), when the
wave packet is elongated in the wavenumber direction, the Stokes drift is much larger and
more concentrated than the background. In case (b), when the wave packet is flattened in the
k direction, the background nearly cancels the Stokes drift, and the mean flow is nearly zero.
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We are now in a position to understand the difference between the
intrinsic and total energies of the wave field. The intrinsic energy is the
potential energy of the wave field plus the kinetic energy of the fluctuating
part. This is the traditional energy, and is appropriate in the mean /fluctuat-
ing decomposition. In the background /wave decomposition, however, the
Stokes drift is associated with the wave. The total energy of the wave is, by
definition, the difference of the total energy and the energy of the back-
ground. The wave kinetic energy contains, in addition to the part in E., the
contribution

3¢(1np2 — 1.2
fd X( 2PVmean 20 Ubackground)

= deX%P[(Vo + vStokes)z - Ug] (57)
= [d*%(¥ * ¥siokes) (58)

to the order we are calculating. Therefore
E—E = [d°xp (%" Vsiokes) (59)
v p (60)

which is identical to (51).

The choice between canonical decomposition, using k, «w, p and E, or
mean / fluctuating decomposition, using k, o, no momentum and E., may
seem arbitrary. Indeed, either can be used correctly. However, there are a
number of simplifying features of the canonical decomposition not shared by
the other decomposition. These are:

(1) E = H. The energy is the value of the Hamiltonian;

(2) the flux of action, momentum, or energy is the group velocity times
the density of the same quantity;

(3) as a consequence, the sources of momentum and energy of the
background from the waves are —d,p and —d,E, respectively. The source of
mass is — V - p, the divergence of the Stokes drift;

(4) d,p= -9, H;d,E=3,H. (61)

According to classical mechanics, the only changes in momentum and energy
come from explicit dependence on space and time. Thus, for example, E (but
not E,) is conserved in motion through a steady, but position-dependent,
background flow. In the case of d 0 = 0 (by assuming constant Brunt—Vaisala
frequency), these equations are

dp=-Vv-p;d,E=03y"p (62)

(5) the approximation scheme does not destroy action conservation; and
(6) the general relations £ = Aw and p = 4k hold even if the approxima-
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tions which gave w =0 + k- v, are not made. The canonical formulation of
the eikonal is more general than is the mean/fluctuating formulation.

4. THE OCEAN MODEL, COMPUTATION PROCEDURES, RESULTS, AND DISCUS-
SION

We wish to study the motion of the center of a wave packet as it
propagates through a field of internal waves. This motion is given as the
solution of Hamilton’s equations, dk/d¢ = —dw/dx and dx/d¢ = dw /0K,
which were derived in Section 2 as eqs. 39 and 40. The Hamiltonian which
governs the motion is w = o(k) + v, - k, as explained in Section 3. A factor, 4,
of wave action, constant along the trajectory, has been scaled out.

The dispersion relation for linear internal waves is

(63)

272 4 g2f2 1/2
U(k)z(kh vf )

ki+k?

where k, and k, are the horizontal and vertical components of wavenumber
k. For the induced diffusion model the flow field consists of large and small
scale components. Using the notation of Meiss and Watson, we let k
represent a wavenumber of the small-scale (test wave) flow, and 1 represent a
wavenumber of the large-scale (background) flow. The induced diffusion
interactions are characterized by the inequalities

k>0, k,>1, 06(k)>a(l) (64)

It is a good approximation to neglect the vertical velocity of the background.
An initial condition (k, x, o(k)) of interest is chosen for the wave packet.
The packet propagates through, and interacts with, the background flow,
u(x, ). However, to the order of interest, the evolution of the background is
independent of the packet. To describe the background, we use the best-
available model of deep ocean internal wave data (Munk, 1981), namely the
Garrett—Munk spectrum. (We use the GM-79 version.) In synthesizing this
spectrum, Garrett and Munk assumed an exponential Vaisala profile

N(z)= N, exp(z/B) (65)

linear wave dynamics, and a WKB approximation for the discrete vertical
displacement eigenfunctions. Dimensioned quantities have the values N, =
5.2x 1073 rad s, and B = 1.3 km. The vertical component of the Coriolis
frequency is f=7.3 X 107> rad s~ ! = 0.014N,, corresponding to the latitude
of 30°. The horizontal components of the frequency are neglected. The
Garrett—Munk spectrum is to be understood as a phenomenological summary
of the observed data, only very roughly incorporating dynamics, rather than
as a dynamical model of internal waves. We do not expect its deficiencies to
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have any important bearing on our considerations of the deep ocean.
Consistent with the observations that went into the making of GM-79, our
background flow at the position of the packet is
NW

u= Y u’(x, 1) (66)

j=1

Each wave component, u®, has the form
e
N,B

/( )

T 1 ST A Y SOl B €9 et (19 . x, — o([D

a1 +lo(l(j))lh Xz W’(O)(j)exp[l(lhj x,—o(19)1)] (67)
Here, W’ denotes the z-derivative of the vertical displacement eigenfunction.
For a Vaisala profile of the form (65), the WKB expression for this
eigenfunction is

W(z)axe */*8sin(I{,B+m/4) (68)
where
[, B=a(m—1/4)e"/® (69)

relates vertical wavenumber, /,, to equivalent modenumber, m. In eq. 67 the
amplitudes a® are complex Gaussian random variables with zero mean, and
variance (|a?|?) equal to the value which gives

(u?) =44.0Mcm2 s72 (70)
Ny

corresponding to an r.m.s. current in the upper ocean beneath the mixed

layer of 7 cm s~!. Wavenumbers and frequencies of the linear waves which

make up the background were chosen by Monte Carlo sampling from the

GM-79 spectrum of horizontal velocity. This spectrum is defined by the

equations

(u*y = [do} F, (o, m) (71)
where

F, P ol+f? 1 1

pras = 12X10 N(z)( - )g(oz_fz)l/z)(m2+9) (72)

The probability of choosing a particular vertical modenumber and frequency
of a sampled wave incorporates the last two terms in parentheses in eq. 72,
while the mean intensity of the Gaussian amplitudes incorporates the first
term in parentheses. Thus, most of the background waves that make up u
have low frequencies and small modenumbers. A modenumber cut-off at
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m =250 was imposed as approximately describing the observed 10-m break
in the spectrum (Gregg, 1977). The direction of the unit vector, 1,, was
chosen by sampling from a uniform distribution of angles in 0 — 2.
Finally, the number of waves which make up the horizontal background flow
was chosen to be NW = 50. This choice was based on the requirement that
the flow should be relatively smooth and realistic, but also that computation
costs should be tolerable; the evaluation of the NW X 2 trigonometric
functions, in eq. 66 at each time step of the integration is a major factor in
the computing time.

Once the background flow has been constructed and initial values of k, x
and o for the wave packet are chosen, the six coupled ordinary differential
equations (Hamilton’s equations) which govern the motion of the packet are
numerically integrated using the best-available general purpose algorithm
(Shampine and Gordon, 1975). The integration of a given trajectory is halted
after a maximum of five inertial periods; k, x and o are reset to their initial
values, a new realization of the background flow is constructed, and another
trajectory is integrated. If the vertical wavelength A , = 2« /k  becomes * too
small” however, (<5 m) we halt the trajectory and declare it to have
“reached a critical layer”. We suspect that dissipation processes might set in
near this scale, although the dynamics of the induced-diffusion portion of
the spectrum we are following is considerably different from the dynamics of
the dominant, lower horizontal wavenumber part that is responsible for the
10-m break. With these procedures, a total of 50 trajectories are obtained
from which average properties are calculated. All averages are taken over the
number of surviving trajectories. The total c.p.u. time for the computation
was 16000 s on a PRIME 500 computer.

Figures 2-7 show results for wave packet initial condition k B = (39.89,
0.00, —57.50), x/B = (0.00, 0.00, —1.00), and o/N, = 0.21; that is, WKB
modenumber m = 50, initial depth (—z)= 1.3 km, and intrinsic frequency
o=151.

Figures 2 and 3 show plots of average horizontal wavenumber and average
horizontal position, respectively. It is seen that (k ), (k ), and { y) fluctuate
about their initial values, with no significant net change. (x) increases
approximately linearly with time, the packet moving with an average hori-
zontal speed of less than 1 km per day. (For comparison, an average
Garrett—Munk wave group travels 11 km in a day.) In the eikonal picture,
therefore, horizontal transport is irrelevant.

Figure 4 shows a plot of average vertical wavenumber, (k ), as a function
of time. During the first half inertial period, there is a smooth six-fold
increase in (k). (The corresponding decrease in wavelength is from (A ) =
130 m to (A,) =20 m.) After this time, (k) fluctuates wildly. There are
seen to be breaks in the (k,) curve, shown by dotted lines. Each break
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60.
<ka>
40.
20.1
k B>
0. W
-20.
0. 1. 2. 3. 4. 5.

TIME (inertial periods)
Fig. 2. Behavior in time of average horizontal wavenumber. The wavenumber components are
non-dimensionalized using the Vaisala scale depth B =1.3 km, the unit of time is one inertial
period. Averages are over the ensemble of surviving trajectories, which numbers 50 at 1 = 0.
(k) and (k) fluctuate about their initial values.

<X/B>

<Y/B>

0. 1. 2. 3. K a. ' 5.
TIME (inertial periods)
Fig. 3. Behavior in time of average horizontal position. {(x) increases slowly whereas (y)
fluctuates about zero. There is clearly a memory of the deterministic part of the initial

velocity components.
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-100. N

N e o
-300. 3 . : . \ /' -
\</\ N\ \ ) \\\ A | \\fjj
J |

-400.

-500.

0. i) 2. 3 ' Q. 5.
TIME [inertial periods)

Fig. 4. Average vertical wavenumber as a function of time. Breaks in the curve correspond to
“critical layer events” which occur when the value of |k,| along a trajectory exceeds the
cut-off value (27/|k,| =5 m is the equivalent wavelength).

50

a0+
& THAT SURVIVE

30 4+

20 +

0 u + + +—
0. 1. 2. 3. 4. 5.
TIME {inertial periods)

Fig. 5..The number of trajectories which have survived the cut-off criterion as a function of
time. In five inertial periods, 34 out of 50 trajectories did not survive.
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corresponds to a trajectory of the original 50-member ensemble which
satisfies the A, = 5 m cut-off criterion. It is removed from the ensemble, and
subsequent averages are taken over the surviving members. Since the trajec-
tory being removed has a significantly higher (positive or negative) k  value
than the average, we see a discontinuity in the (k) curve. Out of the
original 50 members of the ensemble, 34 encountered a “critical layer”
during the five inertial periods. Figure 5 shows a histogram plot of the
number of surviving trajectories versus time. After the first critical layer
event, the number of survivors decreases at an approximately constant rate.
Eventually, a set of trajectories remain which show little inclination toward
reaching a critical layer. (This behavior was typical of a number of wave
packet initial conditions we tried.) Twentyfive of the 34 trajectories which
reached a critical layer did so with a negative k value, i.e., traveling in the
same vertical direction as at ¢ = 0; individual trajectories tend to preserve
their direction in spite of large changes in their vertical wavenumber caused
by the ambient shear.

In Fig. 6 we show plots of k(¢) for three individual trajectories. The solid
curve satisfies the A <5 m cut-off after less than one inertial period,
reaching the cut-off with a positive k, value (i.e., this trajectory did change
direction). The dashed curve represents a trajectory which survived for three
inertial periods. During the first two of these periods the magnitude of k,

Ay <5 METERS

1500. +

1000. A

500. +

1. 2, 3. 4. 5.
TIME (inertial periods)
Fig. 6. Vertical wavenumbers as a function of time for three individual members of the

ensemble of trajectories. Two of the three trajectories shown here reach a “critical layer”.
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0.07

TIME (inertial periods)

Fig. 7. Depth as a function of time for the same three trajectories as in Fig. 6.

increased (with fluctuations) to |k B| = 300. Subsequently, there was a rapid
four-fold increase in magnitude, followed by a short-lived decrease, then a
final surge through the cut-off. The third trajectory, shown in Fig. 6 as dots,
survived the full course of five inertial periods and shows a net increase in
vertical wavenumber to about |k ,B|= 300. Figure 7 shows wave packet
depth, z(¢), for the same trajectories as in Fig. 6. Since z =3, o becomes

0.0+
-0.2+
-0.44 <1/B>
_0.64
-0.8¢1
-1.0

0. i * 2. ' 3. 1) ' 5.
TIME (inertial periods)
Fig. 8. Average depth versus time for the full ensemble of trajectories. Rapid changes in z can
only occur when the vertical wavenumber is small.
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small when |k | is large (as do X and y), the wave packet comes to a near halt
as a critical layer is approached. This can be seen in the figure.

Returning to ensemble average quantities, Fig. 8 shows the time depen-
dence of average depth. We see little vertical motion after the first quarter
inertial period due to the occurrence of critical layers. Finally, Figs. 9 and 10
show average intrinsic frequency, (o), and average total frequency, (w), as
functions of time. The decrease in (o) is tied to the increase in (|k [).
Raggedness of the curves is due to the limited size of the ensemble. Both
figures (especially Fig. 10) show an envelope oscillation with a period of
approximately 1 day (also see (k) plot). The reason for this is the selection
of background wavenumbers and frequencies from the Garrett—Munk spec-
trum: the spectrum strongly weights frequencies toward inertial values.

From our numerical results we see that the dominant transport is in the
vertical wavenumber, k. This transport is shared between a mean motion of
k , to large values, with the same sign as at ¢ = 0, and fluctuations about that
mean. The individual excursions in &, are of large magnitude. The existence
of a large mean motion, and the size of the individual excursions, both show

0.28
0.24

0.20

016\ <a/Ng>
0.12 W\/’\W\"
0.08 Vv/\/\'\

0.04

0.004

0. 1. 2. 3. ) 4. 5.
TIME (inertial periods)
Fig. S. Intrinsic frequency (scaled by the surface Vaisala frequency N,=3 c.p.h.) as a
function of time.
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0.24

0.20
<w/N0>

0.04

0.00

-0.04

0. 1. 2. 3. 4. 5.
TIME (inertial periods)

Fig. 10. Total (Doppler shifted) frequency as a function of time. Since ¢ becomes small at
high vertical wavenumber, the behavior of w is dominated by u-k,. An envelope oscillation
with an approximate period of one day is seen because the G.M. frequency spectrum of
background waves is strongly weighted to the inertial end.

the idea of diffusion in k -t space, implying a random walk, is inap-
propriate.

The large value of the mean motion of k, leads us to a qualitative picture
of the dominant transfer mechanism. The evolution of &, is determined by

k,=—du-k, (73)
(neglecting a much more gentle z-dependence in N?) so that
(kyy=—(3u-k,) = —(3u) -k, (74)

since k; does not seem to have significant transport. Thus, mean motion of
k. requires nonvanishing (d,u). The quantity d,u, however, is a random
function of space and time, primarily of the vertical position of the wave
packet.

In order to explain how (d,u) arises, we imagine that at an initial time,
(9,u) = 0. The wave packet may find itself in either a shear which increases
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the magnitude of k, or a shear which decreases the magnitude of &, with
equal probability. If |k | starts to increase, the wave packet will slow down,
since its vertical speed is approximately Nk, /k?. Then it is likely to remain
in a shear of the same sign, and |k | continues to increase. If, on the other
hand, |k, | begins to decrease, the speed increases, and the packet moves to
another depth at which the sign of the shear is uncorrelated with the initial
shear. Thus, on the average, the packet seeks out a shear with the sign to
make |k | increase, leading to a mean motion of k,. When &k gets large
enough, the wave packet finds itself approaching a critical layer. Only a
change in sign of the shear caused by the time dependence of the back-
ground can cause k, to start decreasing. If this change of shear does not
happen soon enough, the wavelength of the packet gets extremely small, and
presumably dissipation processes occur which destroy the wave packet. The
numerical results indicate that an estimate of the rate at which |k | increases
from its mean level to the cut-off (see Fig. 6) is that the rate is one to two
times Nk,/(2Ri)!/?, where Ri is the background Richardson number of
order (1). Thus, the wave packet selects the sign of the shear, and positions
itself in a place where the magnitude of the shear is slightly larger than the
r.m.s. value.

Our picture of the transport suggests a simple statistical model which
describes much of the transport that occurs. Consistent with the numerical
results, this model ignores the time dependence and horizontal space depen-
dence of the background. If we also ignore the reflections of trajectories at
the surface and at turning points where o = N(z) (this was true of about 50%
of our trajectories), some interesting deductions can be made.

The simple model has the property that vertical propagation is monatonic.
As a result, the vertical position, z, can replace time as the independent
variable. Since w is independent of time, we can write

2% = ~au-k,=G(2) (75)
We imagine an ensemble of trajectories, starting at a given z = z, and having
a given value of the intrinsic frequency, o = ¢,, but different background
realizations (just as with our numerical runs). Equation 75 is a stochastic
differential equation for o, driven by a Gaussian shearing force G(z) with a
correlation length (= 10 m) short compared with the scale of variation of o.
By analogy with the theory of Brownian motion (e.g. Feller, 1966), the
statistical properties of o can be obtained from a diffusion equation for the
probability density, P(z, o):

dP(z,0) D 02P(z,0)
dz B 902

(76)
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D is the diffusivity, defined as

D= [(G(z')G*(0))dz’ (77)
2
= 7“ X shear spectrum evaluated at k, = 0
For the GM-79 spectrum, D has the value
D=1.7k*N/N,) (c.p.h)’m (78)

In order to obtain the finite value in (78), we have neglected the vanishing of
the shear spectrum at low k, by setting m?/(m? + 9) equal to unity.

The presence of critical layers provides eq. 76 with an absorbing boundary
condition

P(z,f)=0 (79)
The solution of (76) with (79) is (see Feller, 1966, p.328)

sz(z’)dz'

20

P(z,0)= (477 )‘l/z{exp[—(o - 00)2/4*[1)(2’)(12,}

N

(A more complete calculation would have included an absorbing barrier at
o = N to take care of the turning point.)

The density of critical layers can be determined by differentiating the
normalization {doP(z, o) with respect to z. This obtains

fZD(z’)dz’

2o

—exp[—(o + 0, — 2f)2/4

p=(L/mlz = z,])"e /o (81)
where
L=(o,—~f)/4D (82)

has the dimensions of length. The most probable value of p occurs at
|z—2z4|=2L/3 =260 m for the initial conditions used in our numerical
experiments, and the distribution has a long tail whose meaning is irrelevant
since our assumptions break down there. There appears to be no easy way of
obtaining statistical information about the time dependence of critical layer
events.

If our picture of the transport is correct, then all previous calculations
have made an invalid approximation for computing the transport of action
through vertical wavenumber space. Traditional calculations, in addition to
assuming the interaction is weak, have also assumed that the motion during
a correlation time of the background is essentially independent of the
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background. Thus, the group velocity of the packet is considered constant
(aside from its dependence on a variable Brunt—Vaisala frequency) in
calculating the transport. Even the Taylor—Goldstein calculation of Meiss
and Watson (which avoided the weak interaction assumption) needed an
assumption equivalent to the requirement that the group velocity does not
respond to the background, in order to convert their formal solution (a time
ordered exponential of an integral) into an actual solution. Our picture
requires the position of the test wave to be strongly correlated with the
background, so that &, is usually positive. The initial position is taken to be
uncorrelated with the background, so this correlation arises through
Jod V00 (7) Which requires dependence of v, on the background. Thus,
the approximation schemes of all previous calculations are inconsistent with
our picture of the dominant transport. Furthermore, we have argued that
induced diffusion describes diffusion in -z space, not in k¢ space as
previously believed.

Since the completion of this work we have explored in detail the connec-
tion of our picture of transport with previous calculations. Confirmation of
much of what we speculate in the above paragraph forms the content of a
paper in preparation.
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