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A B S T R A C T  

Henyey, F.S. and Pomphrey, N., 1983. Eikonal description of internal wave interactions: a 
non-diffusive picture of " induced diffusion". Dyn. Atmos. Oceans, 7: 189-219. 

We use eikonal theory to investigate the " induced diffusion" interaction in the ocean 
between small-scale internal waves and a much larger scale internal wave field. Surprising 
results are found. The eikonal description follows transport in both position and wavenumber 
space. The approach consists of modeling the small-scale portion as a superposition of wave 
packets, each of which moves through the large-scale flow according to the laws of particle 
mechanics: trajectories are determined by the solution of Hamilton 's  ordinary differential 
equations of motion, with a Hamiltonian given by a dispersion relation H(k, x) = ~0 = o(k)+  
v0.k. The first term on the right-hand side is the dispersion relation in the absence of the 
large-scale flow, v 0, and the second term is a Doppler  shift that describes the interaction 
between the different scales. We give a careful derivation of the eikonal equations for a fluid, 
starting with a Hamiltonian description of the fluid flow (Section 2). A discussion is given of 
the important  difference in meaning between the total energy of the wave packet, ,0A, and the 
intrinsic energy, aA (A is the action). We also clarify the existence of a Stokes drift for 
internal waves (Section 3). Numerical  experiments were performed which consist of following 
the motion of the center of a wave packet as it propagates through a Gar re t t -Munk  field of 
internal waves (Section 4). The initial conditions of the packet were chosen to lie within the 
induced diffusion kinematic regime. A total of 50 trajectories were obtained from which 
average properties were calculated. The results of our numerical experiments show that 
horizontal transport is unimportant,  whereas transport through vertical wavenumbers is very 
significant. We find a mean motion of k v to large values with the same sign as at t = 0, and 
fluctuations about that mean. The individual excursions in k v(t)  are of large magnitude, and 
we argue that the traditional idea of diffusion in kv - t  space, implying a random walk, is 
inappropriate. Thirtyfour out of the 50 trajectories in our sample reached a vertical wave- 
length cut-off placed at 5 m, doing so in essentially the same way as trajectories which 
approach a critical layer in a time and horizontal position independent shear flow. On the 
basis of our numerical results we provide a simple model  which describes much of the 
transport that occurs. We argue that diffusion occurs in o - z  space, and a simple " m e a n  first 
passage" calculation allows us to derive an expression for the probability density of critical 
layers. 
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1. INTRODUCTION 

The subject of this paper is an eikonal investigation of the interaction of 
small-scale internal waves with a much larger scale internal wave field. 

Observational data suggests a "universal" steady state velocity spectrum 
for oceanic internal waves (Garrett and Munk, 1979). Several papers have 
attempted to understand the role of wave-wave interaction in determining 
the observed spectral shape (Olbers, 1976; McComas, 1977; McComas and 
Bretherton, 1977; Pomphrey et al., 1980; McComas and Muller, 1981). 
Common to all of these attempts has been the description of wave interac- 
tions in terms of normal modes of the linear equations of fluid motion. The 
earliest detailed calculations assumed that the internal wave field is weakly 
turbulent, and representable as a statistical ensemble of weakly coupled 
wave modes. In this case the Hasselman transport theory (Hasselman, 1962) 
is valid, which provides an evolution equation for action density in wave- 
number space ensemble averaged over realizations of the chosen wave field. 
The work of McComas and Bretherton (1977) was particularly important 
here. Using the Garre t t -Munk spectrum to represent the internal wave field, 
these authors presented a simplified picture of action transfer in terms of 
three "limiting triad mechanisms". One of these mechanisms, named in- 
duced diffusion, is particularly significant since it accounts for most of the 
action transport at high frequencies (o > 5f, f - C o r i o l i s  frequency) and 
modenumbers (m >~ 10). Transport rates, however, are too high to believe the 
weak interaction theory which is used to calculate the rates (Holloway, 
1982). 

The physical description of induced diffusion as the interaction between 
small-scale, high-frequency internal waves (" test" waves) and a much larger 
scale, low-frequency flow suggests a relationship with the Taylor-Goldstein 
equation which is used to discuss the stability of stratified shear flows. Meiss 
and Watson (1982) have recently exploited this relationship to derive relaxa- 
tion rates for internal waves in the induced diffusion domain, without the 
need to make any weak interaction assumption (their analysis is based on a 
linear equation). In order to sum all orders of perturbation theory, however, 
it was crucial for Meiss and Watson to require that 

e l ( t ) = h  2 K_+~,K_+ [C~'(t +Ct(t)eiA+t]{lcll2 ) 

be independent of the average wavenumber, K, of the incoming and outgo- 
ing test waves, over an interval of time for which the interaction with the 
background must be handled deterministically. This time is the correlation 
time of the background as viewed by the system of small-scale waves. In this 
expression, ~ I ct] 2) and C l are the intensity and autocorrelation function of 
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the background which, by definition, are independent of K. Meiss and 
Watson demonstrate that the mode coupling coefficient, h/, is very nearly 
independent of K. This leaves only the frequency mismatches 

A±=o K+I/2-0K 1/2 +°1 

which can depend on K. Since l << K for induced diffusion, A can be 
expanded as 

~ + = ! • (Vgroup(K) -t- Yphase (l)) 

The neglect of the K dependence in A ± amounts to the assumption that, over 
the correlation time, the group velocities of the short waves do not respond 
to the background. It follows that the position of a wave packet,/vgroupdt + 
x0, is uncorrelated with any property of the background, given this ap- 
proximation. Meiss and Watson calculate relaxation rates for short waves 
which are substantially reduced from those predicted by weak interaction 
theory, being within a factor of 10 of the linear frequency even at the highest 
modenumbers.  Nevertheless, the picture of induced diffusion as providing 
the significant transport mechanism for internal waves remained intact. 

In the approaches described so far, the mode amplitude is the fundamen- 
tal quantity whose time evolution is followed. Unless one is able to follow 
the phases of these modes extremely well, and in particular to determine 
correctly subtle phase correlations between modes, position space informa- 
tion is incorrectly described. Yet position space information can be im- 
portant in understanding the processes involved and in assessing the validity 
of approximations, and can be interesting in itself in comparison with 
observations on position space transport and in connection with sources and 
sinks of energy. 

The eikonal description, in contrast to the mode description, follows 
transport in both position and wavenumber space. The fundamental object 
in this description is the Wigner function, with the uncertainty constraint 
(that the position of a wave cannot be defined to better than about a half 
wavelength) usually ignored (correction methods, however, are available; see 
Henyey (1980)). The Wigner function is the analog for waves of the simulta- 
neous specification of the position and velocity of a molecule in a fluid. The 
Boltzmann equation for molecules follows transport in both position and 
velocity. We have performed, and will present in this paper, a detailed 
numerical investigation of transport in the " induced diffusion" kinematic 
regime using eikonal theory. We will present numerical evidence and a 
plausibility argument that the vertical position of a wave packet is strongly 
correlated with the background, and that this correlation is a dominant 
effect in the evolution of the vertical wavenumber. 

The transport of action through vertical wavenumber space is therefore 
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sensitive to the vertical position dependence of the action. If we were to 
assume that the vertical group velocity of a wave packet remains constant 
over a background correlation time, then the vertical wavenumber transport 
would look very different. This c~fse would correspond to a different repre- 
sentation of the same set of approximations made by Meiss and Watson, and 
we would expect our calculation of the evolution of the Wigner function to 
agree with that of Meiss and Watson. In the absence of our making such an 
approximation, however, we expect that the two sets of results are different. 

The eikonal approach is valid in cases where there is a scale separation, 
such as there is for induced diffusion. The approach consists of imagining 
the small-scale wave field as a collection of "molecules",  each with a 
position and wavenumber.  These "molecules"  are not to be thought of as 
isolated objects with rigid boundaries, but  generally overlap one another, 
and fill all of the available space. The actual wave field is then the 
superposition of all the wave packets associated with all the molecules. Each 
wave packet moves along a definite trajectory, much as a particle moves 
along its path. The trajectories are determined by a Hamiltonian given by 
the dispersion relation, ~0 = H(k, x), entirely analogous to classical mecha- 
nics where E = H(p, x) determines the trajectory of a particle. Hamilton's  
equations are v = ~0 /~k ,  the group velocity, and d k / d t  = - a c 0 / ~ x .  In 
eikonal theory the phase velocity plays no role, and the overall phase of the 
wave does not appear in the equations. This is an advantage over modal 
theories which at tempt to obtain position space information, since wave 
phases are ususally very sensitive to error propagation. 

A derivation of the eikonal equations is presented in Section 2, and a 
further discussion of the equations is given in Section 3. It is convenient to 
use an interpretation that is slightly different from that which is standard in 
fluid mechanics. The differences allow the techniques of classical particle 
mechanics to be used in their textbook form. The eikonal equations follow 
the evolution of waves which are small in amplitude and have space a n d / o r  
time scales which are shorter than anything they interact with. The small 
ampli tude allows them to be treated linearly, and the small size allows a 
perturbation expansion in the scale ratio e. The eikonal equations match 
exactly the first two nontrivial powers of e. 

To apply the eikonal to the induced diffusion problem, we imagine the 
flow to be the sum of a given background and a perturbation. The back- 
ground is not to be identified with the mean flow, but  rather the mean flow 
is the sum of background plus Stokes drift. The perturbation is a superposi- 
tion of a set of test wave packets, each with a position (e.g., its center) and a 
wavenumber  (e.g., the mean wavenumber of the packet). Each test wave 
carries its own amount  of action, A. This amount  of action is conserved. The 
energy of the test wave packet is Ato and its momentum is Ak. ¢0 is the total 



193 

frequency, including the Doppler shift; w = o + k .  v 0 (where o is the intrinsic 
frequency, given as a dispersion relation, and v 0 is the background velocity 
flow). Similarly, two energies can be defined, the "intrinsic energy" E~ = Ao 
(a relation derived by Garrett  (1967)), and the " tota l  energy" E--Aco.  This 
latter energy is the more fundamental  quantity since E is equal to a 
Hamiltonian, H(x, Ak), where x and Ak are canonically conjugate variables. 
To order e 2, the only response of the background to the waves is by exchange 
of mass and momentum (which imply the exchange of energy); we say that 
the background and the waves are "dynamical ly independent".  

The value of A scales out of the equations of motion, so the amount  of 
action in each packet is arbitrary. As a consequence we can consider 
h(x, k ) =  H/A as the Hamiltonian and x and k as conjugate variables. 
co = h (x, k) is the dispersion relation for the waves, including Doppler shift. 
The total energy and momentum are obtained by multiplying co and k by A. 

The equations of motion for the packet are Hamilton's equations: 

dx Oh dk Oh 
dt  - Ok and dt  0x 

from which it follows that 

dco Oh 
dt  0t 

In eikonal theory the phase velocity plays no role, and the overall phase of 
the wave does not appear in the equations. Phase differences are formally 
given by 

AO _ f final 
--~initialcodt + k dx 

point 

but inconsequential differences between calculated and true values of co and 
k can make the calculated value of Aq, over any reasonably long path differ 
significantly from its true value. Moreover, each caustic, of which many must 
exist in the ocean, causes this expression to be wrong by an extra 7r/2 phase 
shift. The inability to follow the phase is, in fact, a strong point of the 
eikonal method, since the phase is physically very sensitive to everything. In 
mode calculations, the phase must be followed very closely in order to 
reconstruct position information (assuming the position of the test wave is 
important  for its dynamics). 

In Section 4 we describe a numerical experiment which consists of 
following the motion of the center of a wave packet as it propagates through 
a Ga r r e t t -Munk  field of internal waves. This section begins with a summary 
of the essential results of the eikonal derivation and can be read as a 
self-contained unit. (However, a full appreciation of the underlying ap- 
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proximations requires an understanding of Sections 2 and 3.) The initial 
wavenumber and frequency of the wave packet are chosen to lie within the 
induced diffusion domain. The background flow field is a superposition of 
50 linear internal waves chosen by Monte Carlo sampling of the GM-79 
model spectrum. Such a flow is predominantly horizontal. Integration of 
Hamilton's  equations, which are six coupled ordinary differential equations, 
yields the desired motion of the packet. Average properties are obtained by 
averaging over 50 individual trajectories. 

The results of our numerical experiment, as well as other experiments not 
presented here, show that horizontal transport is unimportant.  For example, 
the wave packet moves with an average horizontal speed of only one-tenth 
that of a typ ica l /3a r re t t -Munk  wave group. On the other hand, changes in 
vertical wavenumber magnitude, k v, are very significant. We find a mean 
motion of k v to large values, with the same sign as at t = 0, and fluctuations 
about that mean. The individual excursions in k v are of large magnitude and 
are a striking feature of the results: an absorbing barrier was placed at 
2~r/k v = 5 m, so that if the vertical wavelength of a trajectory falls beneath 
this cut-off value the trajectory is halted and the initial conditions are reset. 
Thirty four out of 50 trajectories in our sample surged through the cut-off in 
a time of less than five inertial periods (our time limit for the integrations). 
We call such events "critical layer" events because the intrinsic frequency, o, 
is close to the inertial frequency, and the wave is almost always behaving in 
essentially the same way as one that is approaching a critical layer in a time 
and horizontal position independent  shear flow. The existence of a large 
mean motion of k v, and the size of the individual excursions, both show that 
the traditional idea of diffusion in k v - t  space, implying a random walk, is 
inappropriate. On the basis of our numerical results we provide a simple 
model which describes much of the transport that occurs. We argue that 
diffusion actually occurs in o -z  space, and we close by deriving an expres- 
sion for the probability density of critical layers. 

2. DERI;CATION OF EIKONAL EQUATIONS 

In this section we derive the eikonal equations for a fluid. These follow 
the evolution of waves which are small in amplitude and have space a n d / o r  
time scales which are shorter than anything they interact with. 

For a systematic development, it is convenient to start with a Hamiltonian 
description of the fluid flow. A number  of Hamiltonian descriptions of 
cont inuum fields have been given (Seliger and Whitham, 1968; Miles, 1977; 
Morrison and Greene, 1980; Henyey, 1981). All such descriptions lead to 
Hamiltonian densities which can be written in the form 

.~'(q, p, ~Tq, Vp, th, ~7~) (1) 
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q and p are canonical variables, and q~ (not normally included in the 
textbook derivations) a subsidiary variable which allows ~ t o  be written in 
terms of first derivatives. (~Tq, etc., means any derivative of any component  
of ~ .  Equations for the flow follow from a variational principle for the 
action, S: 
0 = 8 S  

= 8fdtd3x(p • ~,q - ~ )  (2) 

The equations are 

8H 
- ~ ' P  = 8q 

8H 
Otq = 8p 

6H 
o -  (3) 

where 

8H ~ ~7 • ~ 
8q - ~q 0(Vq) etc. (4) 

Henyey (1981) has derived the Hamiltonian density for a stratified fluid in 
the incompressible, Boussinesq, f-plane, and dissipation-free approximations. 
With the reference density, P0, taken to be unity, the result is 

J~Y= v2/2 + U(~) (5) 

The potential energy term, U(~), depends only on the vertical Lagrangian 
displacement, ~" (one of the canonical coordinates); 

U(~) = (~2/2 + ~ 3 / 6 ~ : ) U 2 ( z  - ~) (6) 

For deep ocean internal waves, amplitudes are small compared with the scale 
of variation of the Vaisala frequency (1.3 km), therefore, it is sufficient for 
our purposes to retain only the quadratic term in U, i.e., 

U(~) = ~ 2 / 2 N 2 ( z )  (7) 

The velocity, v, is a nonlinear function of p, q, ~ and their derivatives (p and 
q are two-dimensional vectors for internal waves, and q, is a scalar (Henyey, 
1981)). Its precise form is not important here. What is important is that all 
the nonlinearity in v occurs as the advective combination - p .  Vq: 

V(p, q, q~) = v / -  p .  Vq (8) 

where v/is a linear combination of p, q, and ~. 
Our specific interest is an eikonal description of " induced diffusion". The 

physical description of this process involves a restricted set of interactions, 
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between small-scale, high-frequency " tes t  waves" and a much larger scale 
low-frequency background flow (McComas and Bretherton, 1977). The test 
waves are to be considered as small amplitude perturbations on the back- 
ground flow. Because of the small amplitudes, interaction between the test 
waves is unimportant.  Therefore, it suffices to follow the test waves to first 
order in their amplitude, a. For this purpose the Hamiltonian is truncated at 
quadratic order, (_9(a2), retaining all orders in the background. To (~(a) the 
influence of the test waves on the background is dropped. We assume the 
(9(a) background flow to be a specified solution of the equations of motion 
without the perturbation. At this stage, it is important to imagine the 
background to be an exact solution at orders below @(a2); at a later stage 
we can replace it with an approximate solution. Later, we will discuss the 
(-0(a 2) influence of the test wave on the background. 

We perform, therefore, a canonical transformation 

p--* p0 + p 

q - ) q o + q  

~ @ 0 +  q~ (9) 

on the action 

S = / d t d 3 x ( p  • Cl - J~ )  (10) 

Quantities with subscript 0 refer to the given background flow, and quanti- 
ties without subscripts refer to the test wave perturbation. The latter quanti- 
ties are the dynamical variables and we wish to retain these only up to 
quadratic terms. 

Terms independent  of the dynamical variables give a contribution to S 
that has no variation when the values of p, q, and ~ are varied. Such 
contributions can, therefore, be dropped. Linear terms in the perturbation 
do not contribute to S (except at the boundaries at which a variation is not 
performed), since the background is an exact solution of 8S = 0. Thus, only 
the quadratic terms are left. 

In the quadratic terms, we make one further approximation, consistent 
with the eikonal approximation made below. When the expansion (9) is 
substi tuted into terms of the form v • pVq in the kinetic energy, either v, p, or 
q, can have subscript zero. The test wave variables are assumed to have much 
larger wavenumbers than the background. Thus, the term with q0 can be 
dropped relative to terms with q. Upon  integration by parts, v • pVq ~ - v • 
q v p  (since V • v = 0). It follows, therefore, that the terms in Po can also be 
dropped, and the induced diffusion approximation has led us to replace 
v • pVq by  v 0 • pVq. 

With the set of approximations made, the action has the form 

S = / d t d 3 x  p.(8,  + v o- V ) q - / ~ ( p ,  q, g,) (11) 
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where d is the quadratic Hamiltonian density in the absence of the back- 
ground. The only interaction is in the replacement of the partial time 
derivative by the substantive derivative. 

d , = 3  t + v  0 . V  (12) 

If the nonlinear terms in the potential energy or the remaining terms from 
the expansion of v . p V q  had been retained, there would be additional 
coupling of the test wave to the background. The coupling retained in (12) is 
essentially the same as in the Taylor -Golds te in  equation. (Slight differences 
are due to the lack of commutat ion of the operators d, and V. The 
contributions of their commutator  are of the same order as neglected terms.) 

Now that we have eq. 11, we can replace the exact v 0 by an approximate 
solution, such as neglect of the vertical component  of v 0. If this approxima- 
tion had been made earlier, the test wave dynamics would be incorrect due 
to the at tempt of the test wave equation to compensate for the approximate 
background. 

We now have a Hamiltonian which is quadratic in the dynamical varia- 
bles, with coefficients that may be space and time dependent  (via the 
specified background flow). In case the reader dislikes one or more of the 
approximations we have made so far, we will develop the eikonal approxima- 
tion for a general quadratic Hamiltonian. This demonstrates that the essen- 
tials of the eikonal theory are independent  of these approximations. 

To simplify notation, we combine p, q and q~ into a new vector, z 

z = (p, q, q~) (13) 

If p and q have n elements, and tO has m elements, then z has 2n + rn 
elements. Hamilton's  equation, (3), can be rewritten as 

6H 

B 

- <14) 

where (0,0) 
J = - I  0 0 (15) 

0 0 0 

and I is the n x n identity matrix. The zeros are n × n, n x m, m × n, or 
m × m zero matrices. An important  property of J is its antisymmetry: 

J ~  = -JB~ (16) 

The most general quadratic Hamiltonian density with no higher than first 
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derivatives is 

E [Ao  oz  + Bo zo. + vzo (17) 

The scalars, A.p, vectors, B.¢, and dyadics, C ~ ,  can explicitly depend on 
space and time. In our induced diffusion problem, this dependence occurs 
primarily through the dependence of B.¢ on the background velocity. There 
is a slower dependence on depth through the Brunt-Vaisala frequency. In 
the formal development, we will not restrict the space-t ime dependence of 
A, B, or C. 

There is no loss of generality in assuming 

A,~ = AB, ~ 

B.~ = - B e .  
= = T  

C.¢ = CB. (18) 

(The superscript T means transpose in the space indices. The o~, fl indices are 
shown explicitly transposed). The equations of motion are 

B 

This is a linear equation, so solutions superpose. We decompose the field of 
waves into a superposition of overlapping wave packets, more or less filling 
the available space. Each packet is somewhat localized in space, but is large 
enough to contain several wavelengths. Each packet has a narrow band of 
wavenumbers, centered on the nominal wavenumber, k, of the packet. The 
eikonal approximation is applied to each packet separately. 

The eikonal technique involves the ansatz 

z = ~le(  a . e  is) (20) 

and a scale separation which asserts that the factor e ~s varies much more 
rapidly than either a .  or the coefficients A, B and C. This scale separation 
can be expressed as a formal asymptotic expansion by associating a scale 
separation factor, e, with each derivative in eq. 19 and replacing S in eq. 20 
by S / e ,  and expanding in powers of e. It is convenient to put all the e 
dependence into a .  (on occasion other choices have been made in the 
literature): 

~(0) ± ea~l) + . . .  (21) 

Since eq. 19 is linear, we can ensure that a~ 1) is orthogonal to a~ ). Thus 

Y'. a.(°)*a.(1) = 0 (22) 
OL 
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where * means complex conjugate. 
We assume that a~e is (real and imaginary parts) obeys (19). The (,0(1) 

terms of (19), divided by e is, give 

Y'~ M,t~a~ °)= 0 (23) 
B 

where 

M,~¢ = - i ~ J ~ B -  A~¢-  iB~B. k -  k.  C,B. k (24) 

and 

OS 
- Ot (25) 

k = vS  (26) 

The lowest order solution, ,~-¢°), is determined as an eigenvector with vanish- 
ing eigenvalue of a Hermitian matrix, M~B. (The Hermiticity is a conse- 
quence of eqs. 16 and 18.) The condition for existence of the eigenvalue is 

det M = 0 (27) 

which is an equation that relates w and k. The roots of this equation are the 
dispersion relations for the various types of disturbance possible. We will 
select the root for internal waves rather than the root for horizontal eddy 
motion. 

The O(e) part of (19), divided by e is, is 

g [M.¢a~') + J,~B3ta(B°)- ½( V" B.¢) a~ ° ' -  B~" Va~ °~ 
B 

+ V "(e~ B" ik)a~°)+ 2(e~ B- ik).  Va~ °,] = 0  (28) 

The components of this equation orthogonal to a~ °~ serve to set the values for 
(1) a . ,  but do not constrain a~ ). The component along .~-'(°~, however, is 

_(0) Multiplying (28) by " (0~* independent of (1) and is a condition on .~ . - - l / 2 a ~ ,  a .  , 

and summing on a gives (on taking the real part; the imaginary part 
vanishes): 

[ i V',~(0)*, a(0)] i (°)*[B~B 2 i k . ~ ] a ~ ° )  0 (29) 
a,B J a,fl 

This has the form of a conservation equation 

v • = 0 

~¢is the action density 

- i  d =  q -  ~" a "aB'~B 
a,B 

(3o) 



200 

- i  q ,  
- -~ ( p * . q -  . p )  (31) 

and v is the velocity of action flow. The velocity of action flow can be 
identified with the group velocity of the waves as follows: differentiate (23) 
with respect to the wavenumber,  k, mult iply by 1 / 4  a ~°)*, sum on a, and use 
the conjugate of (23) to eliminate the term 

1 E a~ '*M 0a~°, 
~,B Ok 

We obtain 

0 = Y'~ 1,,(o)* 0M~B a~O) 
4~,~ Ok 

a,fl 

~ o[  i 0~o (o)1 . ,(o) ±.(o)*{ -- -- -k) 
= ~,0, 4 0k~'~ o~¢,~¢ - 4-~ ~- iB~z  2C~z a~ °) 

= ~ - ~ -  ~ 'v ]  (32) 

Thus,  we have the impor tant  relation 

0~ 
v -  Ok ( 3 3 )  

The phase, S, is eliminated f rom the basic set of equations (in favor of w and 
k) by replacing eqs. 25 and 26 by their condit ions of integrability 

Ok 
- v , o  ( 3 4 )  

0t 

v × k = 0 (3S) 

Each wavepacket  moves with velocity, v. In order to follow a wavepacket,  
we should know how its wavenumber  changes, which is 

dk  Ok 
- + v .  ~Tk (36) 

dt  0t 

Using eqs. 33 and 34, we obtain 

dk O~o 
d t  - ~Tw + - - ~ .  v k  (37) 

The  dispersion relation gives ,0 as a function of k, x and t. Hence 

0~o 0~0 
w 0  = - ~  + v k .  0--~ (3S) 

Therefore, using (35) ( V  k is a symmetric  dyadic), 
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dk 0o~ 
- ( 3 9 )  

dt Ox 

and (33) can be rewritten as 

dx 0o~ 
d ~ -  ak (40) 

Equations 39 and 40 are Hamilton's equations, with ~ a Hamiltonian given 
by the dispersion relation, x and k are the canonically conjugate variables. 
These equations are the fundamental  equations we integrate to find the 
motion of the wave packet in x, k space. For interpretational purposes, these 
equations should be modified so that the Hamiltonian is the energy of the 
wave packet. The energy density is obtained by replacing z in eq. 17 by 
(aeiS+ a*e ' s ) /2 .  To leading order, the derivatives act only on the e +-is 
The energy density contains slowly varying parts coming from cross terms 
between ae is and a*e -~s, as well as rapidly fluctuating terms proportional to 
e -+2is. The rapidly fluctuating terms integrate to zero (up to corrections 
which vanish exponentially with the expansion parameter), so the total 
energy can be computed from the slowly varying parts. Upon integration by 
parts, we can write the energy density to leading order as 

~ =  ¼ ~ a(°)*[A~/~ + ik .  B ~  + k . ~ / ~ ,  k] a~ °) (41) 
a,,8 

From (23), (24), and (31), this can be rewritten as 

o ~ = ~  (42) 

Integrating over the wavepacket gives 

E = A~ (43) 

where 

E--- fd3x~;  A - f d 3 x ~  (44) 

and where ~ - ( a ~ ) =  1/Afd3xoaag is the weighted average of ~ at each 
point. We are imagining the situation when the values of w are essentially 
constant over the packet. A is the conserved action of the wave packet, 
d A / d t  = 0, and E is the energy. Equation 43 is almost, but not quite, 
Garrett 's  relation between energy and action (see next section). We have 
derived (43) and action conservation in a general context; one need not 
verify them separately for each system, as has been the practice in the 
literature. The condition for the validity of (43) in the eikonal approximation 
is merely that the system has a Hamiltonian. This is known to be true for a 
wide class of cont inuum systems, as long as dissipation processes are 
neglected. 
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If we write 

H = Aw(k, x, t) (45) 

and 

p = Ak (46) 

then Hamilton's equation, (39) and (40) can be expressed in terms of the 
Hamiltonian which is the energy of the wave packet as 

d p =  _ 3H (47) 
dt  3x 

dx 3H 
d ~ -  ~p (48) 

From these equations, one sees that p is the momentum of the wave packet. 
The quantity p has been called a "pseudo-momentum",  and its interpreta- 

tion as a true momentum has even been labeled a " m y t h "  (McIntyre, 1981). 
Since we accept this myth as true, some discussion is appropriate. It turns 
out that this point is closely related to the connection between our expres- 
sion, E = Aw, and Garrett 's  expression, and to the interaction being entirely 
in the replacement ~t -o ~t + v0" xT, and to the Stokes drift. These topics form 
the subject matter  of the next section. 

A complete set of equations in the eikonal approximation is comprised of 
Hamilton's  equations, action conservation, and x7 X k = 0. This last equa- 
tion is the condition that a family of trajectories describing the detailed 
motion of one packet forms a normal family. This condition is important  for 
image-forming optical systems (Landau and Lifshitz, 1975), but is of no 
particular significance in the transport theory of a random collection of 
waves. The equation, V X k = 0, is consistent with Hamilton's equations; if 
it is imposed at the initial time, it holds true at later times. We will consider 
wave packets sufficiently small that at t = 0 we can assume k to be constant, 
so, ~7 x k is trivially zero intially. Furthermore,  we only follow the central 
position of the wave packets, and, since we are not following phases, we can 
consider dispersion as an exchange of action between different packets. 

3. THE STOKES DRIFT, TOTAL ENERGY AND INTRINSIC ENERGY 

In the previous Section, the following results were obtained: 
(1) if the cont inuum system is describable by a Hamiltonian, then the 

eikonal approximation can be made (Whether or not it is accurate is another 
matter.); 

(2) there is a conserved action, A, which flows with a group velocity; 
(3) the energy is Aw and the momentum is Ak; 
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(4) the frequency expressed as a function of k and x is a Hamiltonian. By 
rescaling with the action, the Hamiltonian is the energy; and 

(5) under a reasonable set of approximations, the interaction with the 
background flow, v0, is obtained by replacing 0, by 0, + v 0 • V. 

The results 1 to 4 have been obtained in a more general framework than 
result 5. For  the purposes of the remainder of this paper, we accept result 5, 
which applies not only to our problem, but  with similar approximations to 
many wave systems in which the waves are disturbances of a material 
medium. Essentially, all of the fluid dynamics literature on action conserva- 
tion, etc., has been concerned with such systems. 

The eikonal approximation that follows from result 5 involves a disper- 
sion relation 

~0 = a(k)  +v0.  k (49) 

where o(k) is the dispersion relation in the absence of the background flow, 
v 0. The extra term is the Doppler  shift induced by the flow. Following 
conventional terminology we call o the intrinsic frequency and ~ the total 
frequency. Multiplying each of these by the action of a wavepacket we 
obtain an energy associated with the wavepacket.  By analogy with the 
terminology for frequencies, we call these the intrinsic and total energies of 
the packet. Garrett 's  relation (Garrett, 1967) is 

E~ = A o  (50) 

whereas the relation derived in the previous section is E = A w. The dif- 
ference between E and E i is given in terms of eq. 49 and the expression (46) 
for the momentum as 

E = E~ + v0- p (51) 

Hence, the nature of E is related to the nature of p. 
The momentum, p, has been introduced as the canonical m o m e n t u m - - t h e  

quanti ty conjugate to the position x, or equivalently as the generator of 
infinitesimal displacements of position. If one makes a microscopic theory of 
a fluid, the momentum, defined in the same way, is the mass times the 
velocity: 

p = fd3xpv (52) 

(The total velocity is v 0 + v). We will show the equivalence of expressions 
(46) and (52) (through quadratic order, which is the order at which action is 
usually defined), thereby demonstrating that p is a true momentum, not a 
pseudomomentum.  In fact, p turns out to be the Stokes drift of the 
wavefield. 

The existence of the Stokes drift has been questioned for wavefields other 
than surface waves. This issue is clarified by  noticing that the decomposit ion 



204 

into background and wavefield is not the same as the decomposition into 
mean flow and fluctuating flow, since the fluid velocity is nonlinear in the 
canonical variables. (The quadratic part of v has to be retained when 
evaluating (52) because of the constant term in p.) The decomposition (to 
(9(a2)) into background and wavefield proceeds as follows. The canonical 
variables (rather than velocity components) are Fourier transformed into 
wavenumber space (Fourier transforming is a canonical transformation), 
then projected into small wavenumber components (background) and large 
wavenumber components (wave field). The two sets of components are then 
Fourier transformed separately, back into position space. As a result, the 
canonicalvariables of the wave field are decomposed into mean and fluctuat- 
ing parts. By construction, Poisson brackets between background and wave 
field vanish; the different scales are dynamically independent. 

The mean momentum (or mean velocity in the incompressible, Boussinesq 
approximations) can be evaluated. The mean momentum of the background 
is obtained from terms in the momentum that are independent of the wave 
field. Terms linear in the wave field canonical variables are fluctuating 
quantities, and average to zero. There is a contribution to the average 
momentum from the wave field. This is the Stokes drift, i.e., the mass flow 
associated with the wave field. It comes from the quadratic terms in O v: 

<(pV)quad> = (pVq> (53) 

= ( a e + a ~ ) ( i k a q - i k a q  
(54) 

2 2 ) /  

ik (a~aq * ) (55) = - ~  --  a q a p  

= k A  (56) 

where <. . . )  denotes the projection described above. Thus, the microscopic 
definition of the momentum of the wave field agrees with the definition as 
generator of space translation. 

A physical interpretation of this result is that the Stokes drift accompanies 
the waves, while the background is dynamically independent. Thus, for 
example, if initial conditions consist of a fluctuating wave packet and zero 
mean flow, the Stokes drift (Ak) will move with the packet, while the 
background ( - A k  at t = 0) will evolve separately. The (negative of the) 
divergence of the Stokes drift is a source of flow for the background, - d / d t  
(Ak) is a force on the background, and - d / d t  (A~o) is work done on the 
background. Thus the background flow responds indirectly to the wave field. 
The relationship of the background flow to the Stokes drift depends on the 
geometry of the wave field envelope. An extreme case is a wave packet much 
longer in the k direction than in the other two directions. In this instance, 
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illustrated in Fig. 1, the Stokes drift deposits water at one end of the packet 
and depletes it from the other end. The background includes a dipole return 
flow between this source and sink. The return flow occupies a region much 
larger than the wave packet, and is much weaker. The total flux of the return 
flow cancels the total flux of the Stokes drift, as required by the equation of 
continuity. A second extreme case, also illustrated in Fig. 1, is a wave packet 
much shorter in the k direction than in the other two directions. In this case, 
the source and sink are spread out over the two sides of the flattened packet, 
and the return flow cancels the Stokes drift, leaving nearly zero mean flow. 

(a) 

/ 

I 
\ 

I 
J 

J 
[3 

(b) 

Fig. 1. The Stokes drift (S) and background (B) in two extreme cases. In case (a), when the 
wave packet is elongated in the wavenumber direction, the Stokes drift is much larger and 
more concentrated than the background. In case (b), when the wave packet is flattened in the 
k direction, the background nearly cancels the Stokes drift, and the mean flow is nearly zero. 
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We are now in a position to understand the difference between the 
intrinsic and total energies of the wave field. The intrinsic energy is the 
potential energy of the wave field plus the kinetic energy of the fluctuating 
part. This is the traditional energy, and is appropriate in the mean/ f luc tua t -  
ing decomposition. In the background /wave  decomposition, however, the 
Stokes drift is associated with the wave. The total energy of the wave is, by 
definition, the difference of the total energy and the energy of the back- 
ground. The wave kinetic energy contains, in addition to the part in E~, the 
contribution 

3 1 2 fd X ( ~ P U m e a n  - 1 - U  2 I O background ] 

= fd3xlp[(Vo + VStokes) 2 -  UO 2] (57) 

= fd3x(v0 • VStokes ) (58) 

to the order we are calculating. Therefore 

E - E i = /d3xp(v0  • VStoke~ ) (59) 

= vo- p (60) 

which is identical to (51). 
The choice between canonical decomposition, using k, ~, p and E, or 

mean / f luc tua t ing  decomposition, using k, o, no momentum and Ei, may 
seem arbitrary. Indeed, either can be used correctly. However, there are a 
number  of simplifying features of the canonical decomposition not shared by 
the other decomposition. These are: 

(1) E = H. The energy is the value of the Hamiltonian; 
(2) the flux of action, momentum,  or energy is the group velocity times 

the density of the same quantity; 
(3) as a consequence, the sources of momentum and energy of the 

background from the waves are - d i p  and - d , E ,  respectively. The source of 
mass is - V • p, the divergence of the Stokes drift; 

(4) d ,p  = -OxH;  d , E =  DtH. (61) 

According to classical mechanics, the only changes in momentum and energy 
come from explicit dependence on space and time. Thus, for example, E (but 
not Ei) is conserved in motion through a steady, but position-dependent,  
background flow. In the case of 0xo = 0 (by assuming constant Brunt-Vaisala 
frequency), these equations are 

d ,p  = - vv0 .  p; dtE= 0iv0. p (62) 

(5) the approximation scheme does not destroy action conservation; and 
(6) the general relations E = Am and p = Ak hold even if the approxima- 
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tions which gave ~0 = o + k-  v 0 are not made. The canonical formulation of 
the eikonal is more general than is the mean / f luc tua t ing  formulation. 

4. THE OCEAN MODEL, COMPUTATION PROCEDURES, RESULTS, AND DISCUS- 
SION 

We wish to study the motion of the center of a wave packet as it 
propagates through a field of internal waves. This motion is given as the 
solution of Hamilton's  equations, d k / d t  = - 0 o : / 0 x  and d x / d t  = 0 ~ / 0 k ,  
which were derived in Section 2 as eqs. 39 and 40. The Hamiltonian which 
governs the motion is w = o(k) + v 0 • k, as explained in Section 3. A factor. A, 
of wave action, constant along the trajectory, has been scaled out. 

The dispersion relation for linear internal waves is 

k 2 U  2 + kZvf 2 11/2 
o(k)  = (63) 

k2+ k2v J 
where k h and k v are the horizontal and vertical components  of wavenumber 
k. For the induced diffusion model the flow field consists of large and small 
scale components.  Using the notation of Meiss and Watson, we let k 
represent a wavenumber of the small-scale (test wave) flow, and 1 represent a 
wavenumber  of the large-scale (background) flow. The induced diffusion 
interactions are characterized by the inequalities 

k h >> l h, k v >> l v , o ( k )  >> o ( l )  (64) 

It is a good approximation to neglect the vertical velocity of the background. 
An initial condition (k, x, o(k))  of interest is chosen for the wave packet. 

The packet propagates through, and interacts with, the background flow, 
u(x, t). However, to the order of interest, the evolution of the background is 
independent  of the packet. To describe the background, we use the best- 
available model of deep ocean internal wave data (Munk, 1981), namely the 
G a r r e t t - M u n k  spectrum. (We use the GM-79 version.) In synthesizing this 
spectrum, Garrett  and Munk assumed an exponential Vaisala profile 

N ( z )  = U o e x p ( z / B )  (65) 

linear wave dynamics, and a WKB approximation for the discrete vertical 
displacement eigenfunctions. Dimensioned quantifies have the values N o = 
5.2 × 10 -3 rad s -a, and B = 1.3 km. The vertical component  of the Coriolis 
frequency is f =  7.3 × 10 -5 rad s-1 = 0.014N0, corresponding to the latitude 
of  30 ° . The horizontal components  of the frequency are neglected. The 
G a r r e t t - M u n k  spectrum is to be understood as a phenomenological summary 
of the observed data, only very roughly incorporating dynamics, rather than 
as a dynamical model of internal waves. We do not expect its deficiencies to 
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have any important bearing on our considerations of the deep ocean. 
Consistent with the observations that went into the making of GM-79, our 

background flow at the position of the packet is 
N W  

u =  Y~ u(J)(x, t) (66) 
j = l  

Each wave component,  u °), has the form 

( ) . No B a (j) ](hJ)+i f - - ] ( J ) x ~  W'(z)(J)exp[i(l(hJ) x h - o ( l ( J ) ) t ) ]  (67) 
o(;(J)) h w,(0)(j) 

Here, W' denotes the z-derivative of the vertical displacement eigenfunction. 
For a Vaisala profile of the form (65), the WKB expression for this 
eigenfunction is 

W( z ) ~ e - ' / :B  sin( l ,B  + 7r/4) (68) 

where 

lzB = ~r(m - 1/4)e  z/B (69) 

relates vertical wavenumber, lz, to equivalent modenumber,  m. In eq. 67 the 
amplitudes a G) are complex Gaussian random variables with zero mean, and 
variance (ta°)l 1) equal to the value which gives 

(u  2) = 44.0 NN--~ cm 2 S-2 (70) 

corresponding to an r.m.s, current in the upper ocean beneath the mixed 
layer of 7 cm s-1. Wavenumbers and frequencies of the linear waves which 
make up the background were chosen by Monte Carlo sampling from the 
GM-79 spectrum of horizontal velocity. This spectrum is defined by the 
equations 

(u  2) = fdoY'~Fu(o, m) (71) 

where 

F. - 1.2 x 10 -6 N(z)( °2 o 2+f2 ) 
o ( o 2 _ f 2 )  1/2 m 2 + 9 

The probability of choosing a particular vertical modenumber  and frequency 
of a sampled wave incorporates the last two terms in parentheses in eq. 72, 
while the mean intensity of the Gaussian amplitudes incorporates the first 
term in parentheses. Thus, most of the background waves that make up u 
have low frequencies and small modenumbers.  A modenumber cut-off at 
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m = 250 was imposed as approximately describing the observed 10-m break 
in the spectrum (Gregg, 1977). The direction of the unit vector, Jh, was 
chosen by sampling from a uniform distribution of angles in 0 ~ 2~r. 
Finally, the number of waves which make up the horizontal background flow 
was chosen to be N W  = 50. This choice was based on the requirement that 
the flow should be relatively smooth and realistic, but also that computat ion 
costs should be tolerable; the evaluation of the N W ×  2 trigonometric 
functions, in eq. 66 at each time step of the integration is a major factor in 
the computing time. 

Once the background flow has been constructed and initial values of k, x 
and o for the wave packet are chosen, the six coupled ordinary differential 
equations (Hamilton's equations) which govern the motion of the packet are 
numerically integrated using the best-available general purpose algorithm 
(Shampine and Gordon, 1975). The integration of a given trajectory is halted 
after a maximum of five inertial periods; k, x and o are reset to their initial 
values, a new realization of the background flow is constructed, and another 
trajectory is integrated. If the vertical wavelength ~v = 2 ~ / k v  becomes " too  
small" however, ( <  5 m) we halt the trajectory and declare it to have 
"reached a critical layer". We suspect that dissipation processes might set in 
near this scale, although the dynamics of the induced-diffusion portion of 
the spectrum we are following is considerably different from the dynamics of 
the dominant,  lower horizontal wavenumber part that is responsible for the 
10-m break. With these procedures, a total of 50 trajectories are obtained 
from which average properties are calculated. All averages are taken over the 
number of surviving trajectories. The total c.p.u, time for the computat ion 
was 16 000 s on a PRIME 500 computer. 

Figures 2-7  show results for wave packet initial condition kB = (39.89, 
0.00, -57.50),  x / B  -- (0.00, 0.00, -1.00) ,  and o / N  o = 0.21; that is, WKB 
modenumber  m = 50, initial depth ( - z ) =  1.3 km, and intrinsic frequency 
o = 1 5 f .  

Figures 2 and 3 show plots of average horizontal wavenumber and average 
horizontal position, respectively. It is seen that { k~ }, { k,, }, and { y } fluctuate 
about their initial values, with no significant net change. {x} increases 
approximately linearly with time, the packet moving with an average hori- 
zontal speed of less than 1 km per day. (For comparison, an average 
G a r r e t t - M u n k  wave group travels 11 km in a day.) In the eikonal picture, 
therefore, horizontal transport is irrelevant. 

Figure 4 shows a plot of average vertical wavenumber, { k v }, as a function 
of time. During the first half inertial period, there is a smooth six-fold 
increase in { k v }. (The corresponding decrease in wavelength is from { X v } = 
130 m to {X~} ~ 20 m.) After this time, {kv} fluctuates wildly. There are 
seen to be breaks in the {kv} curve, shown by dotted lines. Each break 
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O. I .  2. . • ~. 

TIME ( i n e r t i a ]  per iods)  

Fig. 2. Behavior in time of average horizontal wavenumber. The wavenumber components are 
non-dimensionalized using the Vaisala scale depth B = 1.3 km, the unit of time is one inertial 
period. Averages are over the ensemble of surviving trajectories, which numbers 50 at t = 0. 
(kx )  and (ky )  fluctuate about their initial values. 

- l .  

<X/B> 

<Y/B> 

J t J J I I 3 ~ I I I 
O .  . 2 .  . 4 .  5 .  

TIME ( i n e r t i a l  per iods)  

Fig. 3. Behavior in time of average horizontal position. ( x )  increases slowly whereas ( y )  
fluctuates about zero. There is clearly a memory of the deterministic part of the initial 
velocity components. 
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Fig. 4. Average vertical wavenumber as a function of time. Breaks in the curve correspond to 
"critical layer events" which occur when the value of Ikvl along a trajectory exceeds the 
cut-off value (2~r/Ikvl = 5 m is the equivalent wavelength). 

4O 
THAT SURVIVE 

q ~  
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L- 

0 I 1 3 ~ P 51 
O. I .  2. . 4. . 

TIME ( i n e r t i a l  p e r i o d s )  

Fig. 5..The number of  trajectories which have survived the cut-off criterion as a function of 
time. In five inertial periods, 34 out of 50 trajectories did not survive. 
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corresponds to a trajectory of the original 50-member ensemble which 
satisfies the ~v = 5 m cut-off criterion. It is removed from the ensemble, and 
subsequent averages are taken over the surviving members. Since the trajec- 
tory being removed has a significantly higher (positive or negative) k v value 
than the average, we see a discontinuity in the (kv> curve. Out of the 
original 50 members of the ensemble, 34 encountered a "critical layer" 
during the five inertial periods. Figure 5 shows a histogram plot of the 
number of surviving trajectories versus time. After the first critical layer 
event, the number of survivors decreases at an approximately constant rate. 
Eventually, a set of trajectories remain which show little inclination toward 
reaching a critical layer. (This behavior was typical of a number of wave 
packet initial conditions we tried.) Twentyfive of the 34 trajectories which 
reached a critical layer did so with a negative k v value, i.e., traveling in the 
same vertical direction as at t = 0; individual trajectories tend to preserve 
their direction in spite of large changes in their vertical wavenumber caused 
by the ambient shear. 

In Fig. 6 we show plots of k v(t) for three individual trajectories. The solid 
curve satisfies the )~v < 5 m cut-off after less than one inertial period, 
reaching the cut-off with a positive k v value (i.e., this trajectory did change 
direction). The dashed curve represents a trajectory which survived for three 
inertial periods. During the first two of these periods the magnitude of k v 

1500 . .  

l O 0 0 . -  
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t~ 
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I JI . . .  
i .  
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."'. r ,  

, \  . .  f • j .  , ~  ¢ 

O. 1. 2 .  

!kvBI 

L . .  

I I I 

3. 4. 5, 

TIME ( i n e r t i a l  p e r i o d s )  

Fig. 6. Vertical wavenumbers as a function of time for three individual members of the 
ensemble of trajectories. Two of the three trajectories shown here reach a "cri t ical  layer". 
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Fig. 7. Depth as a function of time for the same three trajectories as in Fig. 6. 

increased (with f luctuat ions)  to IkvB I = 300. Subsequent ly ,  there was a rapid 
four-fold increase in magni tude ,  fo l lowed by a short-l ived decrease, then a 
final surge through the cut-off .  The  third trajectory, shown  in Fig. 6 as dots,  
survived the full course of  five inertial periods and shows  a net increase in 
vertical wavenumber  to about  IkvBJ : 300. Figure 7 shows  wave packet  
depth,  z ( t ) ,  for the same trajectories as in Fig. 6. Since ± = Ok O becomes  
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Fig. 8, Average depth versus time for the full ensemble of trajectories. Rapid changes in z can 
only occur when the vertical wavenumber is small. 
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small when IkvJ is large (as do 5c and p), the wave packet comes to a near halt 
as a critical layer is approached. This can be seen in the figure. 

Returning to ensemble average quantities, Fig. 8 shows the time depen- 
dence of average depth. We see little vertical motion after the first quarter 
inertial period due to the occurrence of critical layers. Finally, Figs. 9 and 10 
show average intrinsic frequency, ( o ) ,  and average total frequency, < ~o), as 
functions of time. The decrease in (o> is tied to the increase in (Ikvl>. 
Raggedness of the curves is due to the limited size of the ensemble. Both 
figures (especially Fig. 10) show an envelope oscillation with a period of 
approximately 1 day (also see (kv> plot). The reason for this is the selection 
of background wavenumbers and frequencies from the Gar r e t t -Munk  spec- 
trum: the spectrum strongly weights frequencies toward inertial values. 

From our numerical results we see that the dominant  transport is in the 
vertical wavenumber, k v. This transport is shared between a mean motion of 
k v to large values, with the same sign as at t -- 0, and fluctuations about that 
mean. The individual excursions in k v are of large magnitude. The existence 
of a large mean motion, and the size of the individual excursions, both show 

0"28 t 

0.24[ 

0.20 ~va~/ A 
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TIME ( inert ia l  periods) 

Fig. 9. Intrinsic frequency (scaled by the surface Valsala frequency N O = 3 c.p.h.) as a 
function of time. 
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Fig. 10. Total (Doppler shifted) frequency as a function of time, Since o becomes small at 
high vertical wavenumber, the behavior of ~0 is dominated by u .k  h. An envelope oscillation 
with an approximate period of one day is seen because the G.M. frequency spectrum of 
background waves is strongly weighted to the inertial end. 

the idea of diffusion in k v - t  space, implying a random walk, is inap- 
propriate. 

The large value of the mean motion of k v leads us to a qualitative picture 
of  the dominant transfer mechanism. The evolution of k v is determined by 

k v = - O~u- k h ( 7 3 )  

(neglecting a much more gentle z-dependence in N 2) so that 

( k v )  = - <3:u. kh> = -- (~zU) • k h (74) 

since k h does not seem to have significant transport. Thus, mean motion of 
k v requires nonvanishing (3:u). The quantity 3zu, however, is a random 
function of space and time, primarily of the vertical position of the wave 
packet. 

In order to explain how (3zu) arises, we imagine that at an initial time, 
(3~u> = 0. The wave packet may find itself in either a shear which increases 
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the magnitude of k v or a shear which decreases the magnitude of k V, with 
equal probability. If ]kv] starts to increase, the wave packet will slow down, 
since its vertical speed is approximately N k h / k  2. Then it is likely to remain 
in a shear of the same sign, and Ikv] continues to increase. If, on the other 
hand, Ikv] begins to decrease, the speed increases, and the packet moves to 
another depth at which the sign of the shear is uncorrelated with the initial 
shear. Thus, on the average, the packet seeks out a shear with the sign to 
make Ikvl increase, leading to a mean motion of k v. When k v gets large 
enough, the wave packet finds itself approaching a critical layer. Only a 
change in sign of the shear caused by the time dependence of the back- 
ground can cause k v to start decreasing. If this change of shear does not 
happen soon enough, the wavelength of the packet gets extremely small, and 
presumably dissipation processes occur which destroy the wave packet. The 
numerical results indicate that an estimate of the rate at which [k vl increases 
from its mean level to the cut-off (see Fig. 6) is that the rate is one to two 
times Nkh/(2RJ) 1/2, where Ri is the background Richardson number  of 
order (1). Thus, the wave packet selects the sign of the shear, and positions 
itself in a place where the magnitude of the shear is slightly larger than the 
r.m.s, value. 

Our picture of the transport suggests a simple statistical model which 
describes much of the transport that occurs. Consistent with the numerical 
results, this model ignores the time dependence and horizontal space depen- 
dence of the background. If we also ignore the reflections of trajectories at 
the surface and at turning points where o = N(z)  (this was true of about 50% 
of our trajectories), some interesting deductions can be made. 

The simple model has the property that vertical propagation is monatonic. 
As a result, the vertical position, z, can replace time as the independent  
variable. Since o~ is independent  of time, we can write 

~o 
- 3zU-kh = G(z )  (75) 

3z 

We imagine an ensemble of trajectories, starting at a given z = z 0 and having 
a given value of the intrinsic frequency, o = %, but different background 
realizations (just as with our numerical runs). Equation 75 is a stochastic 
differential equation for o, driven by a Gaussian shearing force G(z)  with a 
correlation length ( =  10 m) short compared with the scale of variation of o. 
By analogy with the theory of Brownian motion (e.g. Feller, 1966), the 
statistical properties of o can be obtained from a diffusion equation for the 
probability density, P(z ,  o): 

~P(z,  o) = D 32P(z'  o) (76) 
~z ~o 2 
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D is the diffusivity, defined as 

D= J{G(z')G*(O))dz' (77) 

k2 × shear spectrum evaluated at k v 0 
2 

For the GM-79 spectrum, D has the value 

O = 1.7 kZ(N/No) 2 (c.p.h.)2m (78) 

In order to obtain the finite value in (78), we have neglected the vanishing of 
the shear spectrum at low k v by setting m 2 / ( r n  2 + 9) equal to unity. 

The presence of critical layers provides eq. 76 with an absorbing boundary 
condition 

P ( z , f ) = O  (79) 

The solution of (76) with (79) is (see Feller, 1966, p.328) 

-1/2f [ 

- e x p [ - ( O + O o - 2 f ) 2 / 4 f [ D ( z ' ) d z ' ] }  (80) 

(A more complete calculation would have included an absorbing barrier at  

o -- N to take care of the turning point.) 
The density of critical layers can be determined by differentiating the 

normalization fdoP(z, o) with respect to z. This obtains 

p = (L/wiz - zoi3)'/2e -L/'z-z''l (81) 

where 

L = (o o - / ) 2 / 4 D  (82) 

has the dimensions of length. The most probable value of p occurs at 
[ z -  z0[ = 2L/3  = 260 m for the initial conditions used in our numerical 
experiments, and the distribution has a long tail whose meaning is irrelevant 
since our assumptions break down there. There appears to be no easy way of 
obtaining statistical information about the time dependence of critical layer 
events. 

If our picture of the transport is correct, then all previous calculations 
have made an invalid approximation for computing the transport of action 
through vertical wavenumber space. Traditional calculations, in addition to 
assuming the interaction is weak, have also assumed that the motion during 
a correlation time of the background is essentially independent  of the 
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background. Thus, the group velocity of the packet is considered constant 
(aside from its dependence on a variable Brunt-Vaisala frequency) in 
calculating the transport. Even the Taylor-Goldstein calculation of Meiss 
and Watson (which avoided the weak interaction assumption) needed an 
assumption equivalent to the requirement that the group velocity does not 
respond to the background, in order to convert their formal solution (a time 
ordered exponential of an integral) into an actual solution. Our picture 
requires the position of the test wave to be strongly correlated with the 
background, so that k v is usually positive. The initial position is taken to be 
uncorrelated with the background, so this correlation arises through 
f~dtvgroup (t) which requires dependence of Vgroup on the background. Thus, 
the approximation schemes of all previous calculations are inconsistent with 
our picture of the dominant transport. Furthermore, we have argued that 
induced diffusion describes diffusion in o - z  space, not in k v t space as 
previously believed. 

Since the completion of this work we have explored in detail the connec- 
tion of our picture of transport with previous calculations. Confirmation of 
much of what we speculate in the above paragraph forms the content of a 
paper in preparation. 
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